Source code for pennylane.templates.layers.gate_fabric
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.# Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at# http://www.apache.org/licenses/LICENSE-2.0# Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.r"""Contains the quantum-number-preserving GateFabric template."""# pylint: disable-msg=too-many-branches,too-many-arguments,protected-accessimportnumpyasnpimportpennylaneasqmlfrompennylane.operationimportAnyWires,Operation
[docs]classGateFabric(Operation):r"""Implements a local, expressive, and quantum-number-preserving ansatz proposed by `Anselmetti et al. (2021) <https://doi.org/10.1088/1367-2630/ac2cb3>`_. This template prepares the :math:`N`-qubit trial state by applying :math:`D` layers of gate-fabric blocks :math:`\hat{U}_{GF}(\vec{\theta},\vec{\phi})` to the Hartree-Fock state in the Jordan-Wigner basis .. math:: \vert \Psi(\vec{\theta},\vec{\phi})\rangle = \hat{U}_{GF}^{(D)}(\vec{\theta}_{D},\vec{\phi}_{D}) \ldots \hat{U}_{GF}^{(2)}(\vec{\theta}_{2},\vec{\phi}_{2}) \hat{U}_{GF}^{(1)}(\vec{\theta}_{1},\vec{\phi}_{1}) \vert HF \rangle, where each of the gate fabric blocks :math:`\hat{U}_{GF}(\vec{\theta},\vec{\phi})` is comprised of two-parameter four-qubit gates :math:`\hat{Q}(\theta, \phi)` that act on four nearest-neighbour qubits. The circuit implementing a single layer of the gate fabric block for :math:`N = 8` is shown in the figure below: .. figure:: ../../_static/templates/layers/gate_fabric_layer.png :align: center :width: 100% :target: javascript:void(0); The gate element :math:`\hat{Q}(\theta, \phi)` (`Anselmetti et al. (2021) <https://doi.org/10.1088/1367-2630/ac2cb3>`_) is composed of a four-qubit spin-adapted spatial orbital rotation gate, which is implemented by the :class:`~.OrbitalRotation()` operation and a four-qubit diagonal pair-exchange gate, which is equivalent to the :class:`~.DoubleExcitation()` operation. In addition to these two gates, the gate element :math:`\hat{Q}(\theta, \phi)` can also include an optional constant :math:`\hat{\Pi} \in \{\hat{I}, \text{OrbitalRotation}(\pi)\}` gate. .. figure:: ../../_static/templates/layers/q_gate_decompositon.png :align: center :width: 75% :target: javascript:void(0); | The four-qubit :class:`~.DoubleExcitation()` and :class:`~.OrbitalRotation()` gates given here are equivalent to the :math:`\text{QNP}_{PX}(\theta)` and :math:`\text{QNP}_{OR}(\phi)` gates presented in `Anselmetti et al. (2021) <https://doi.org/10.1088/1367-2630/ac2cb3>`_, respectively. Moreover, regardless of the choice of :math:`\hat{\Pi}`, this gate fabric will exactly preserve the number of particles and total spin of the state. Args: weights (tensor_like): Array of weights of shape ``(D, L, 2)``\, where ``D`` is the number of gate fabric layers and ``L = N/2-1`` is the number of :math:`\hat{Q}(\theta, \phi)` gates per layer with N being the total number of qubits. wires (Iterable): wires that the template acts on. init_state (tensor_like): iterable of shape ``(len(wires),)``\, representing the input Hartree-Fock state in the Jordan-Wigner representation. include_pi (boolean): If True, the optional constant :math:`\hat{\Pi}` gate is set to :math:`\text{OrbitalRotation}(\pi)`. Default value is :math:`\hat{I}`. .. details:: :title: Usage Details #. The number of wires :math:`N` has to be equal to the number of spin-orbitals included in the active space, and should be even. #. The number of trainable parameters scales linearly with the number of layers as :math:`2 D (N/2-1)`. An example of how to use this template is shown below: .. code-block:: python import pennylane as qml from pennylane import numpy as np # Build the electronic Hamiltonian symbols = ["H", "H"] coordinates = np.array([0.0, 0.0, -0.6614, 0.0, 0.0, 0.6614]) H, qubits = qml.qchem.molecular_hamiltonian(symbols, coordinates) # Define the Hartree-Fock state electrons = 2 ref_state = qml.qchem.hf_state(electrons, qubits) # Define the device dev = qml.device('default.qubit', wires=qubits) # Define the ansatz @qml.qnode(dev) def ansatz(weights): qml.GateFabric(weights, wires=[0,1,2,3], init_state=ref_state, include_pi=True) return qml.expval(H) # Get the shape of the weights for this template layers = 2 shape = qml.GateFabric.shape(n_layers=layers, n_wires=qubits) # Initialize the weight tensors np.random.seed(42) weights = np.random.random(size=shape) # Define the optimizer opt = qml.GradientDescentOptimizer(stepsize=0.4) # Store the values of the cost function energy = [ansatz(weights)] # Store the values of the circuit weights angle = [weights] max_iterations = 100 conv_tol = 1e-06 for n in range(max_iterations): weights, prev_energy = opt.step_and_cost(ansatz, weights) energy.append(ansatz(weights)) angle.append(weights) conv = np.abs(energy[-1] - prev_energy) if n % 2 == 0: print(f"Step = {n}, Energy = {energy[-1]:.8f} Ha") if conv <= conv_tol: break print("\n" f"Final value of the ground-state energy = {energy[-1]:.8f} Ha") print("\n" f"Optimal value of the circuit parameters = {angle[-1]}") .. code-block:: none Step = 0, Energy = -0.87007254 Ha Step = 2, Energy = -1.13107530 Ha Step = 4, Energy = -1.13611971 Ha Step = 6, Energy = -1.13618810 Ha Final value of the ground-state energy = -1.13618903 Ha Optimal value of the circuit parameters = [[[ 0.60328427 0.41850407]] [[ 0.85581129 -0.24522642]]] **Parameter shape** The shape of the weights argument can be computed by the static method :meth:`~.GateFabric.shape` and used when creating randomly initialised weight tensors: .. code-block:: python shape = GateFabric.shape(n_layers=2, n_wires=4) weights = np.random.random(size=shape) >>> weights.shape (2, 1, 2) """num_wires=AnyWiresgrad_method=Nonedef__init__(self,weights,wires,init_state,include_pi=False,id=None):iflen(wires)<4:raiseValueError(f"This template requires the number of qubits to be greater than four; got wires {wires}")iflen(wires)%2:raiseValueError(f"This template requires an even number of qubits; got {len(wires)} wires")shape=qml.math.shape(weights)iflen(shape)!=3:raiseValueError(f"Weights tensor must be 3-dimensional; got shape {shape}")len_wire_pattern=int((len(wires)/2)-1)ifshape[1]!=len_wire_pattern:raiseValueError(f"Weights tensor must have second dimension of length {len_wire_pattern}; got {shape[1]}")ifshape[2]!=2:raiseValueError(f"Weights tensor must have third dimension of length 2; got {shape[2]}")self._hyperparameters={"init_state":tuple(init_state),"include_pi":include_pi,}super().__init__(weights,wires=wires,id=id)@propertydefnum_params(self):return1
[docs]@staticmethoddefcompute_decomposition(weights,wires,init_state,include_pi):# pylint: disable=arguments-differr"""Representation of the operator as a product of other operators. .. math:: O = O_1 O_2 \dots O_n. .. seealso:: :meth:`~.GateFabric.decomposition`. Args: weights (tensor_like): Array of weights of shape ``(D, L, 2)``, where ``D`` is the number of gate fabric layers and ``L = N/2-1`` is the number of :math:`\hat{Q}(\theta, \phi)` gates per layer with N being the total number of qubits. wires (Any or Iterable[Any]): wires that the operator acts on. init_state (tensor_like): iterable of shape ``(len(wires),)``\, representing the input Hartree-Fock state in the Jordan-Wigner representation. include_pi (boolean): If ``True``, the optional constant :math:`\hat{\Pi}` gate is set to :math:`\text{OrbitalRotation}(\pi)`. Default value is :math:`\hat{I}`. Returns: list[.Operator]: decomposition of the operator **Example** >>> weights = torch.tensor([[[0.3, 1.]]]) >>> qml.GateFabric.compute_decomposition(weights, wires=["a", "b", "c", "d"], init_state=[0, 1, 0, 1], include_pi=False) [BasisEmbedding(wires=['a', 'b', 'c', 'd']), DoubleExcitation(tensor(0.3000), wires=['a', 'b', 'c', 'd']), OrbitalRotation(tensor(1.), wires=['a', 'b', 'c', 'd'])] """op_list=[]n_layers=qml.math.shape(weights)[0]wire_pattern=[wires[i:i+4]foriinrange(0,len(wires),4)iflen(wires[i:i+4])==4]iflen(wires)>4:wire_pattern+=[wires[i:i+4]foriinrange(2,len(wires),4)iflen(wires[i:i+4])==4]op_list.append(qml.BasisEmbedding(init_state,wires=wires))forlayerinrange(n_layers):foridx,wires_inenumerate(wire_pattern):ifinclude_pi:op_list.append(qml.OrbitalRotation(np.pi,wires=wires_))op_list.append(qml.DoubleExcitation(weights[layer][idx][0],wires=wires_))op_list.append(qml.OrbitalRotation(weights[layer][idx][1],wires=wires_))returnop_list
[docs]@staticmethoddefshape(n_layers,n_wires):r"""Returns the shape of the weight tensor required for this template. Args: n_layers (int): number of layers n_wires (int): number of qubits Returns: tuple[int]: shape """ifn_wires<4:raiseValueError(f"This template requires the number of qubits to be at least four; got 'n_wires' = {n_wires}")ifn_wires%2:raiseValueError(f"This template requires an even number of qubits; got 'n_wires' = {n_wires}")returnn_layers,n_wires//2-1,2