Source code for pennylane.templates.subroutines.arithmetic.semi_adder

# Copyright 2025 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains the SemiAdder template for performing the semi-out-place addition."""

from pennylane.decomposition import (
    add_decomps,
    adjoint_resource_rep,
    controlled_resource_rep,
    register_resources,
)
from pennylane.operation import Operation
from pennylane.ops import CNOT, adjoint, ctrl
from pennylane.queuing import AnnotatedQueue, QueuingManager, apply
from pennylane.wires import Wires, WiresLike

from .temporary_and import TemporaryAND


def _left_operator(wires, ik_is_zero=False):
    """Implement the left block in figure 2, https://arxiv.org/pdf/1709.06648.

    Args:
        wires (Sequence[int]): the four wires that are represented in figure 2
        ik_is_zero (bool): boolean used to specify if the input state :math:`|i_k\rangle = |0\rangle`. This
                           extra information reduces de complexity of the circuit.
    """

    if not ik_is_zero:
        ck, ik, tk, aux = wires
        return [
            CNOT([ck, ik]),
            CNOT([ck, tk]),
            TemporaryAND([ik, tk, aux]),
            CNOT([ck, aux]),
        ]

    ck, tk, aux = wires

    return [CNOT([ck, tk]), TemporaryAND([ck, tk, aux]), CNOT([ck, aux])]


def _right_operator(wires, ik_is_zero=False):
    """Implement the right block in figure 2, https://arxiv.org/pdf/1709.06648.

    Args:
        wires (Sequence[int]): the four wires that are represented in figure 2
        ik_is_zero (bool): boolean used to specify if the input state :math:`|i_k\rangle = |0\rangle`. This
                           extra information reduces de complexity of the circuit.
    """

    if not ik_is_zero:
        ck, ik, tk, aux = wires
        return [
            CNOT([ck, aux]),
            adjoint(TemporaryAND([ik, tk, aux])),
            CNOT([ck, ik]),
            CNOT([ik, tk]),
        ]

    ck, tk, aux = wires

    return [CNOT([ck, aux]), adjoint(TemporaryAND([ck, tk, aux]))]


def _controlled_right_operator(
    wires, control_wires, control_values, ik_is_zero=False, work_wires=None
):
    """Implement the right block in figure 4, https://arxiv.org/pdf/1709.06648.

    Args:
        control_wires (Sequence[int]): wires used to control the operator
        control_values (Iterable[bool | int]): the control values
        wires (Sequence[int]): the last four wires that are represented in figure 4
        ik_is_zero (bool): boolean used to specify if the input state :math:`|i_k\rangle = |0\rangle`. This
                           extra information reduces de complexity of the circuit
    """

    if not ik_is_zero:
        ck, ik, tk, aux = wires
        return [
            CNOT([ck, aux]),
            adjoint(TemporaryAND([ik, tk, aux])),
            ctrl(
                CNOT(wires=[ik, tk]),
                control=control_wires,
                control_values=control_values,
                work_wires=work_wires,
            ),
            CNOT([ck, ik]),
            CNOT([ck, tk]),
        ]

    ck, tk, aux = wires

    return [
        CNOT([ck, aux]),
        adjoint(TemporaryAND([ck, tk, aux])),
        ctrl(
            CNOT(wires=[ck, tk]),
            control=control_wires,
            control_values=control_values,
            work_wires=work_wires,
        ),
        CNOT([ck, tk]),
    ]


[docs] class SemiAdder(Operation): r"""This operator performs the plain addition of two integers :math:`x` and :math:`y` in the computational basis: .. math:: \text{SemiAdder} |x \rangle | y \rangle = |x \rangle | x + y \rangle, This operation is also referred to as semi-out-place addition or quantum-quantum in-place addition in the literature. The implementation is based on `arXiv:1709.06648 <https://arxiv.org/abs/1709.06648>`_. Args: x_wires (Sequence[int]): The wires that store the integer :math:`x`. The number of wires must be sufficient to represent :math:`x` in binary. y_wires (Sequence[int]): The wires that store the integer :math:`y`. The number of wires must be sufficient to represent :math:`y` in binary. These wires are also used to encode the integer :math:`x+y` which is computed modulo :math:`2^{\text{len(y_wires)}}` in the computational basis. work_wires (Optional(Sequence[int])): The auxiliary wires to use for the addition. At least, ``len(y_wires) - 1`` work wires should be provided. **Example** This example computes the sum of two integers :math:`x=3` and :math:`y=4`. .. code-block:: python x = 3 y = 4 wires = qml.registers({"x":3, "y":6, "work":5}) dev = qml.device("default.qubit") @qml.set_shots(1) @qml.qnode(dev) def circuit(): qml.BasisEmbedding(x, wires=wires["x"]) qml.BasisEmbedding(y, wires=wires["y"]) qml.SemiAdder(wires["x"], wires["y"], wires["work"]) return qml.sample(wires=wires["y"]) .. code-block:: pycon >>> print(circuit()) [[0 0 0 1 1 1]] The result :math:`[[0 0 0 1 1 1]]`, is the binary representation of :math:`3 + 4 = 7`. Note that the result is computed modulo :math:`2^{\text{len(y_wires)}}` which makes the computed value dependent on the size of the ``y_wires`` register. This behavior is demonstrated in the following example. .. code-block:: python x = 3 y = 1 wires = qml.registers({"x":3, "y":2, "work":1}) dev = qml.device("default.qubit") @qml.set_shots(1) @qml.qnode(dev) def circuit(): qml.BasisEmbedding(x, wires=wires["x"]) qml.BasisEmbedding(y, wires=wires["y"]) qml.SemiAdder(wires["x"], wires["y"], wires["work"]) return qml.sample(wires=wires["y"]) >>> print(circuit()) [[0 0]] The result :math:`[0\ 0]` is the binary representation of :math:`3 + 1 = 4` where :math:`4 \mod 2^2 = 0`. """ grad_method = None resource_keys = {"num_y_wires"} def __init__( self, x_wires: WiresLike, y_wires: WiresLike, work_wires: WiresLike | None, id=None ): x_wires = Wires(x_wires) y_wires = Wires(y_wires) work_wires = Wires(work_wires if work_wires is not None else []) if work_wires: if len(work_wires) < len(y_wires) - 1: raise ValueError(f"At least {len(y_wires)-1} work_wires should be provided.") if work_wires.intersection(x_wires): raise ValueError("None of the wires in work_wires should be included in x_wires.") if work_wires.intersection(y_wires): raise ValueError("None of the wires in work_wires should be included in y_wires.") if x_wires.intersection(y_wires): raise ValueError("None of the wires in y_wires should be included in x_wires.") self.hyperparameters["x_wires"] = x_wires self.hyperparameters["y_wires"] = y_wires self.hyperparameters["work_wires"] = work_wires if work_wires: all_wires = Wires.all_wires([x_wires, y_wires, work_wires]) else: all_wires = Wires.all_wires([x_wires, y_wires]) super().__init__(wires=all_wires, id=id) @property def resource_params(self) -> dict: return { "num_y_wires": len(self.hyperparameters["y_wires"]), } @property def num_params(self): return 0 def _flatten(self): metadata = tuple((key, value) for key, value in self.hyperparameters.items()) return tuple(), metadata @classmethod def _unflatten(cls, data, metadata): hyperparams_dict = dict(metadata) return cls(**hyperparams_dict)
[docs] def map_wires(self, wire_map: dict) -> "SemiAdder": new_dict = { key: [wire_map.get(w, w) for w in self.hyperparameters[key]] for key in ["x_wires", "y_wires", "work_wires"] } return SemiAdder( new_dict["x_wires"], new_dict["y_wires"], new_dict["work_wires"], )
[docs] def decomposition(self): r"""Representation of the operator as a product of other operators.""" return self.compute_decomposition(**self.hyperparameters)
@classmethod def _primitive_bind_call(cls, *args, **kwargs): return cls._primitive.bind(*args, **kwargs)
[docs] @staticmethod def compute_decomposition(x_wires, y_wires, work_wires): # pylint: disable=arguments-differ r"""Representation of the operator as a product of other operators. The implementation is based on `arXiv:1709.06648 <https://arxiv.org/abs/1709.06648>`_. Args: x_wires (Sequence[int]): The wires that store the integer :math:`x`. The number of wires must be sufficient to represent :math:`x` in binary. y_wires (Sequence[int]): The wires that store the integer :math:`y`. The number of wires must be sufficient to represent :math:`y` in binary. These wires are also used to encode the integer :math:`x+y` which is computed modulo :math:`2^{\text{len(y_wires)}}` in the computational basis. work_wires (Sequence[int]): The auxiliary wires to use for the addition. At least, ``len(y_wires) - 1`` work wires should be provided. Returns: list[.Operator]: Decomposition of the operator """ with AnnotatedQueue() as q: _semiadder(x_wires, y_wires, work_wires) if QueuingManager.recording(): for op in q.queue: apply(op) return q.queue
def _semiadder_resources(num_y_wires): # Resources extracted from `arXiv:1709.06648 <https://arxiv.org/abs/1709.06648>`_. # In the case where len(x_wires) < len(y_wires), this is an upper bound. return { TemporaryAND: num_y_wires - 1, adjoint_resource_rep(TemporaryAND, {}): num_y_wires - 1, CNOT: 6 * (num_y_wires - 2) + 3, } @register_resources(_semiadder_resources, exact=False) def _semiadder(x_wires, y_wires, work_wires, **_): num_y_wires = len(y_wires) num_x_wires = len(x_wires) if num_y_wires == 1: CNOT([x_wires[-1], y_wires[0]]) return x_wires_pl = x_wires[::-1][:num_y_wires] y_wires_pl = y_wires[::-1] work_wires_pl_template = work_wires[: num_y_wires - 1][::-1] TemporaryAND([x_wires_pl[0], y_wires_pl[0], work_wires_pl_template[0]]) for i in range(1, num_y_wires - 1): if i < num_x_wires: _left_operator( [ work_wires_pl_template[i - 1], x_wires_pl[i], y_wires_pl[i], work_wires_pl_template[i], ] ) else: _left_operator( [work_wires_pl_template[i - 1], y_wires_pl[i], work_wires_pl_template[i]], ik_is_zero=True, ) CNOT([work_wires_pl_template[-1], y_wires_pl[-1]]) if num_x_wires >= num_y_wires: CNOT([x_wires_pl[-1], y_wires_pl[-1]]) for i in range(len(y_wires_pl) - 2, 0, -1): if i < num_x_wires: _right_operator( [ work_wires_pl_template[i - 1], x_wires_pl[i], y_wires_pl[i], work_wires_pl_template[i], ] ) else: _right_operator( [work_wires_pl_template[i - 1], y_wires_pl[i], work_wires_pl_template[i]], ik_is_zero=True, ) adjoint(TemporaryAND([x_wires_pl[0], y_wires_pl[0], work_wires_pl_template[0]])) CNOT([x_wires_pl[0], y_wires_pl[0]]) add_decomps(SemiAdder, _semiadder) def _controlled_semi_adder_resource( base_class, base_params, num_control_wires, num_zero_control_values, **kwargs ): # pylint: disable=unused-argument r""" Resources calculated from `arXiv:1709.06648 <https://arxiv.org/abs/1709.06648>`_. In the case where len(x_wires) < len(y_wires), this is an upper bound. """ num_y_wires = base_params["num_y_wires"] return { TemporaryAND: num_y_wires - 1, adjoint_resource_rep(TemporaryAND, {}): num_y_wires - 1, CNOT: 6 * (num_y_wires - 2) + 1, controlled_resource_rep( CNOT, {}, num_control_wires=num_control_wires, num_zero_control_values=num_zero_control_values, work_wire_type="borrowed", ): num_y_wires, } @register_resources(_controlled_semi_adder_resource, exact=False) def _controlled_semi_adder(base, control_wires, control_values, **__): r""" Decomposition extracted from `arXiv:1709.06648 <https://arxiv.org/abs/1709.06648>`_ using building block described in Figure 4. """ y_wires = base.hyperparameters["y_wires"] x_wires = base.hyperparameters["x_wires"] work_wires = base.hyperparameters["work_wires"][: len(y_wires) - 1] extra_work_wires = base.hyperparameters["work_wires"][len(y_wires) - 1 :] num_y_wires = len(y_wires) num_x_wires = len(x_wires) if num_y_wires == 1: ctrl( CNOT([x_wires[-1], y_wires[0]]), control=control_wires, control_values=control_values, work_wires=extra_work_wires, ) return x_wires_pl = x_wires[::-1][:num_y_wires] y_wires_pl = y_wires[::-1] work_wires_pl = work_wires[::-1] TemporaryAND([x_wires_pl[0], y_wires_pl[0], work_wires_pl[0]]) for i in range(1, num_y_wires - 1): if i < num_x_wires: _left_operator([work_wires_pl[i - 1], x_wires_pl[i], y_wires_pl[i], work_wires_pl[i]]) else: _left_operator([work_wires_pl[i - 1], y_wires_pl[i], work_wires_pl[i]], ik_is_zero=True) ctrl( CNOT([work_wires_pl[-1], y_wires_pl[-1]]), control=control_wires, control_values=control_values, work_wires=extra_work_wires, ) if num_x_wires >= num_y_wires: CNOT([x_wires_pl[-1], y_wires_pl[-1]]) for i in range(len(y_wires_pl) - 2, 0, -1): wire_args = [work_wires_pl[i - 1], y_wires_pl[i], work_wires_pl[i]] ik_is_zero = True if i < num_x_wires: wire_args.insert(1, x_wires_pl[i]) ik_is_zero = False _controlled_right_operator( wire_args, control_wires=control_wires, control_values=control_values, work_wires=extra_work_wires, ik_is_zero=ik_is_zero, ) adjoint(TemporaryAND([x_wires_pl[0], y_wires_pl[0], work_wires_pl[0]])) ctrl( CNOT([x_wires_pl[0], y_wires_pl[0]]), control=control_wires, control_values=control_values, work_wires=extra_work_wires, ) add_decomps("C(SemiAdder)", _controlled_semi_adder)