Source code for pennylane.templates.subroutines.controlled_sequence
# Copyright 2018-2023 Xanadu Quantum Technologies Inc.# Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at# http://www.apache.org/licenses/LICENSE-2.0# Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.r"""Contains the ControlledSequence template."""fromcopyimportcopyimportpennylaneasqmlfrompennylane.operationimportOperationfrompennylane.ops.op_math.symbolicopimportSymbolicOpfrompennylane.wiresimportWires
[docs]classControlledSequence(SymbolicOp,Operation):r"""Creates a sequence of controlled gates raised to decreasing powers of 2. Can be used as a sub-block in building a `quantum phase estimation <https://en.wikipedia.org/wiki/Quantum_phase_estimation_algorithm>`__ circuit. Given an :class:`~.Operator` and a list of control wires, this template creates a sequence of controlled gates, one for each control wire, with the base :class:`~.Operator` raised to decreasing powers of 2: .. figure:: ../../_static/templates/subroutines/big_ctrl.png :align: center :width: 40% :target: javascript:void(0); Args: base (Operator): the phase estimation unitary, specified as an :class:`~.Operator` control (Union[Wires, Sequence[int], or int]): the wires to be used for control Raises: ValueError: if the wires in ``control`` and wires on the ``base`` operator share a common element .. seealso:: :class:`~.QuantumPhaseEstimation` **Example** .. code-block:: python dev = qml.device("default.qubit", wires = 4) @qml.qnode(dev) def circuit(): for i in range(3): qml.Hadamard(wires = i) qml.ControlledSequence(qml.RX(0.25, wires = 3), control = [0, 1, 2]) qml.adjoint(qml.QFT)(wires = range(3)) return qml.probs(wires = range(3)) >>> print(circuit()) [0.92059345 0.02637178 0.00729619 0.00423258 0.00360545 0.00423258 0.00729619 0.02637178] """grad_method=Nonedef_flatten(self):return(self.base,),(self.control,)@classmethoddef_unflatten(cls,data,metadata):returncls(data[0],control=metadata[0])def__init__(self,base,control,id=None):control_wires=Wires(control)iflen(Wires.shared_wires([base.wires,control_wires]))!=0:raiseValueError("The control wires must be different from the base operation wires.")self.hyperparameters["control_wires"]=control_wiresself.hyperparameters["base"]=baseself._name="ControlledSequence"super().__init__(base,id=id)@propertydefhash(self):returnhash((str(self.name),self.control,self.base.hash,))@propertydefcontrol(self):"""The control wires for the sequence"""returnself.hyperparameters["control_wires"]@propertydefcontrol_wires(self):"""The control wires for the sequence"""returnself.hyperparameters["control_wires"]@propertydefwires(self):returnself.control+self.base.wires@propertydefhas_matrix(self):returnFalsedef__repr__(self):returnf"ControlledSequence({self.base}, control={list(self.control)})"
[docs]@staticmethoddefcompute_decomposition(*_,base=None,control_wires=None,lazy=False,**__):r"""Representation of the operator as a product of other operators. .. math:: O = O_1 O_2 \dots O_n. .. seealso:: :meth:`~.CtrlSequence.decomposition`. Args: base (Operator): the operator that acts as the base for the sequence control_wires (Any or Iterable[Any]): the control wires for the sequence Returns: list[.Operator]: decomposition of the operator **Example** .. code-block:: python dev = qml.device("default.qubit") op = qml.ControlledSequence(qml.RX(0.25, wires = 3), control = [0, 1, 2]) @qml.qnode(dev) def circuit(): op.decomposition() return qml.state() >>> print(qml.draw(circuit, wire_order=[0,1,2,3])()) 0: ─╭●─────────────────────────────────────┤ State 1: ─│────────────╭●────────────────────────┤ State 2: ─│────────────│────────────╭●───────────┤ State 3: ─╰(RX(1.00))──╰(RX(0.50))──╰(RX(0.25))──┤ State To display the operators as powers of the base operator without further simplification, the `compute_decomposition` method can be used with `lazy=True`. .. code-block:: python dev = qml.device("default.qubit") op = qml.ControlledSequence(qml.RX(0.25, wires = 3), control = [0, 1, 2]) @qml.qnode(dev) def circuit(): op.compute_decomposition(base=op.base, control_wires=op.control, lazy=True) return qml.state() >>> print(qml.draw(circuit, wire_order=[0,1,2,3])()) 0: ─╭●─────────────────────────────────────┤ State 1: ─│────────────╭●────────────────────────┤ State 2: ─│────────────│────────────╭●───────────┤ State 3: ─╰(RX(0.25))⁴─╰(RX(0.25))²─╰(RX(0.25))¹─┤ State """powers_of_two=[2**iforiinrange(len(control_wires))]ops=[]forz,ctrl_wireinzip(powers_of_two[::-1],control_wires):ops.append(qml.pow(qml.ctrl(base,control=ctrl_wire),z=z,lazy=lazy))returnops