Source code for pennylane.templates.subroutines.interferometer
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
Contains the ``Interferometer`` template.
"""
from itertools import product
import pennylane as qml
from pennylane.operation import AnyWires, CVOperation
# pylint: disable-msg=too-many-branches,too-many-arguments,protected-access
from pennylane.ops import Beamsplitter, Rotation
from pennylane.wires import Wires
[docs]class Interferometer(CVOperation):
r"""General linear interferometer, an array of beamsplitters and phase shifters.
For :math:`M` wires, the general interferometer is specified by
providing :math:`M(M-1)/2` transmittivity angles :math:`\theta` and the same number of
phase angles :math:`\phi`, as well as :math:`M-1` additional rotation
parameters :math:`\varphi`.
By specifying the keyword argument ``mesh``, the scheme used to implement the interferometer
may be adjusted:
* ``mesh='rectangular'`` (default): uses the scheme described in
`Clements et al. <https://dx.doi.org/10.1364/OPTICA.3.001460>`__, resulting in a *rectangular* array of
:math:`M(M-1)/2` beamsplitters arranged in :math:`M` slices and ordered from left
to right and top to bottom in each slice. The first beamsplitter acts on
wires :math:`0` and :math:`1`:
.. figure:: ../../_static/clements.png
:align: center
:width: 30%
:target: javascript:void(0);
* ``mesh='triangular'``: uses the scheme described in `Reck et al. <https://dx.doi.org/10.1103/PhysRevLett.73.58>`__,
resulting in a *triangular* array of :math:`M(M-1)/2` beamsplitters arranged in
:math:`2M-3` slices and ordered from left to right and top to bottom. The
first and fourth beamsplitters act on wires :math:`M-1` and :math:`M`, the second
on :math:`M-2` and :math:`M-1`, and the third on :math:`M-3` and :math:`M-2`, and
so on.
.. figure:: ../../_static/reck.png
:align: center
:width: 30%
:target: javascript:void(0);
In both schemes, the network of :class:`~pennylane.ops.Beamsplitter` operations is followed by
:math:`M` local :class:`~pennylane.ops.Rotation` Operations.
The rectangular decomposition is generally advantageous, as it has a lower
circuit depth (:math:`M` vs :math:`2M-3`) and optical depth than the triangular
decomposition, resulting in reduced optical loss.
This is an example of a 4-mode interferometer with beamsplitters :math:`B` and rotations :math:`R`,
using ``mesh='rectangular'``:
.. figure:: ../../_static/layer_interferometer.png
:align: center
:width: 60%
:target: javascript:void(0);
.. note::
The decomposition as formulated in `Clements et al. <https://dx.doi.org/10.1364/OPTICA.3.001460>`__ uses a different
convention for a beamsplitter :math:`T(\theta, \phi)` than PennyLane, namely:
.. math:: T(\theta, \phi) = BS(\theta, 0) R(\phi)
For the universality of the decomposition, the used convention is irrelevant, but
for a given set of angles the resulting interferometers will be different.
If an interferometer consistent with the convention from `Clements et al. <https://dx.doi.org/10.1364/OPTICA.3.001460>`__
is needed, the optional keyword argument ``beamsplitter='clements'`` can be specified. This
will result in each :class:`~pennylane.ops.Beamsplitter` being preceded by a :class:`~pennylane.ops.Rotation` and
thus increase the number of elementary operations in the circuit.
Args:
theta (tensor_like): size :math:`(M(M-1)/2,)` tensor of transmittivity angles :math:`\theta`
phi (tensor_like): size :math:`(M(M-1)/2,)` tensor of phase angles :math:`\phi`
varphi (tensor_like): size :math:`(M,)` tensor of rotation angles :math:`\varphi`
wires (Iterable or Wires): Wires that the template acts on. Accepts an iterable of numbers or strings, or
a Wires object.
mesh (string): the type of mesh to use
beamsplitter (str): if ``clements``, the beamsplitter convention from
Clements et al. 2016 (https://dx.doi.org/10.1364/OPTICA.3.001460) is used; if ``pennylane``, the
beamsplitter is implemented via PennyLane's ``Beamsplitter`` operation.
Raises:
ValueError: if inputs do not have the correct format
Example:
The template requires :math:`3` sets of parameters. The ``mesh`` and ``beamsplitter`` keyword arguments are optional and
have ``'rectangular'`` and ``'pennylane'`` as default values.
.. code-block:: python
dev = qml.device('default.gaussian', wires=4)
@qml.qnode(dev)
def circuit(params):
qml.Interferometer(*params, wires=range(4))
return qml.expval(qml.Identity(0))
shapes = [[6, ], [6, ], [4, ]]
params = []
for shape in shapes:
params.append(np.random.random(shape))
Using these random parameters, the resulting circuit is:
>>> print(qml.draw(circuit, level="device")(params))
0: ─╭BS(0.97,0.09)────────────────╭BS(0.89,0.33)──R(0.83)────────────────┤ <I>
1: ─╰BS(0.97,0.09)─╭BS(0.94,0.05)─╰BS(0.89,0.33)─╭BS(0.92,0.27)──R(0.36)─┤
2: ─╭BS(0.78,0.20)─╰BS(0.94,0.05)─╭BS(0.60,0.39)─╰BS(0.92,0.27)──R(0.28)─┤
3: ─╰BS(0.78,0.20)────────────────╰BS(0.60,0.39)──R(0.54)────────────────┤
Using different values for optional arguments:
.. code-block:: python
@qml.qnode(dev)
def circuit(params):
qml.Interferometer(*params, wires=range(4), mesh='triangular', beamsplitter='clements')
return qml.expval(qml.Identity(0))
shapes = [[6, ], [6, ], [4, ]]
params = []
for shape in shapes:
params.append(np.random.random(shape))
print(qml.draw(circuit, level="device")(params))
.. code-block::
0: ──R(0.71)───────────────────────────────╭BS(0.07,0.00)──R(0.36)──────────────────────────────
1: ──R(0.82)────────────────╭BS(0.80,0.00)─╰BS(0.07,0.00)──R(0.77)───────╭BS(0.77,0.00)──R(0.12)
2: ──R(0.01)─╭BS(0.14,0.00)─╰BS(0.80,0.00)──R(0.73)───────╭BS(0.99,0.00)─╰BS(0.77,0.00)──R(0.07)
3: ──────────╰BS(0.14,0.00)───────────────────────────────╰BS(0.99,0.00)────────────────────────
──────────────────────────┤ <I>
──────────────────────────┤
──╭BS(0.20,0.00)──R(0.86)─┤
──╰BS(0.20,0.00)──R(0.62)─┤
"""
num_wires = AnyWires
grad_method = None
def __init__(
self,
theta,
phi,
varphi,
wires,
mesh="rectangular",
beamsplitter="pennylane",
id=None,
):
wires = Wires(wires)
n_wires = len(wires)
shape_theta_phi = n_wires * (n_wires - 1) // 2
shape = qml.math.shape(theta)
if shape != (shape_theta_phi,):
raise ValueError(f"Theta must be of shape {(shape_theta_phi,)}; got {shape}.")
shape = qml.math.shape(phi)
if shape != (shape_theta_phi,):
raise ValueError(f"Phi must be of shape {(shape_theta_phi,)}; got {shape}.")
shape_varphi = qml.math.shape(varphi)
if shape_varphi != (n_wires,):
raise ValueError(f"Varphi must be of shape {(n_wires,)}; got {shape_varphi}.")
self._hyperparameters = {
"mesh": mesh,
"beamsplitter": beamsplitter,
}
super().__init__(theta, phi, varphi, wires=wires, id=id)
[docs] @staticmethod
def compute_decomposition(
theta, phi, varphi, wires, mesh, beamsplitter
): # pylint: disable=arguments-differ
r"""Representation of the operator as a product of other operators.
.. math:: O = O_1 O_2 \dots O_n.
.. seealso:: :meth:`~.Interferometer.decomposition`.
Args:
theta (tensor_like): size :math:`(M(M-1)/2,)` tensor of transmittivity angles
phi (tensor_like): size :math:`(M(M-1)/2,)` tensor of phase angles
varphi (tensor_like): size :math:`(M,)` tensor of rotation angles
wires (Any or Iterable[Any]): wires that the operator acts on
mesh (string): the type of mesh to use
beamsplitter (str): beamsplitter convention
Returns:
list[.Operator]: decomposition of the operator
"""
wires = Wires(wires)
M = len(wires)
op_list = []
if M == 1:
# the interferometer is a single rotation
op_list.append(Rotation(varphi[0], wires=wires[0]))
else:
n = 0 # keep track of free parameters
if mesh == "rectangular":
# Apply the Clements beamsplitter array
# The array depth is N
for m, (k, (w1, w2)) in product(range(M), enumerate(zip(wires[:-1], wires[1:]))):
# skip even or odd pairs depending on layer
if (m + k) % 2 != 1:
if beamsplitter == "clements":
op_list.append(Rotation(phi[n], wires=Wires(w1)))
op_list.append(Beamsplitter(theta[n], 0, wires=Wires([w1, w2])))
elif beamsplitter == "pennylane":
op_list.append(Beamsplitter(theta[n], phi[n], wires=Wires([w1, w2])))
else:
raise ValueError(f"did not recognize beamsplitter {beamsplitter}")
n += 1
elif mesh == "triangular":
# apply the Reck beamsplitter array
# The array depth is 2*N-3
for m in range(2 * M - 3):
for k in range(abs(m + 1 - (M - 1)), M - 1, 2):
if beamsplitter == "clements":
op_list.append(Rotation(phi[n], wires=wires[k]))
op_list.append(
Beamsplitter(theta[n], 0, wires=wires.subset([k, k + 1]))
)
elif beamsplitter == "pennylane":
op_list.append(
Beamsplitter(theta[n], phi[n], wires=wires.subset([k, k + 1]))
)
else:
raise ValueError(f"did not recognize beamsplitter {beamsplitter} ")
n += 1
else:
raise ValueError(f"did not recognize mesh {mesh}")
# apply the final local phase shifts to all modes
for i in range(qml.math.shape(varphi)[0]):
act_on = wires[i]
op_list.append(Rotation(varphi[i], wires=act_on))
return op_list
[docs] @staticmethod
def shape(n_wires):
r"""Returns a list of shapes for the 3 parameter tensors.
Args:
n_wires (int): number of wires
Returns:
list[tuple[int]]: list of shapes
"""
shape_theta_phi = n_wires * (n_wires - 1) // 2
shapes = [(shape_theta_phi,)] * 2 + [(n_wires,)]
return shapes
_modules/pennylane/templates/subroutines/interferometer
Download Python script
Download Notebook
View on GitHub