Source code for pennylane.templates.subroutines.qft
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This submodule contains the template for QFT.
"""
# pylint:disable=abstract-method,arguments-differ,protected-access
import functools
import numpy as np
import pennylane as qml
from pennylane.operation import AnyWires, Operation
from pennylane.wires import Wires, WiresLike
[docs]class QFT(Operation):
r"""QFT(wires)
Apply a quantum Fourier transform (QFT).
For the :math:`N`-qubit computational basis state :math:`|m\rangle`, the QFT performs the
transformation
.. math::
|m\rangle \rightarrow \frac{1}{\sqrt{2^{N}}}\sum_{n=0}^{2^{N} - 1}\omega_{N}^{mn} |n\rangle,
where :math:`\omega_{N} = e^{\frac{2 \pi i}{2^{N}}}` is the :math:`2^{N}`-th root of unity.
**Details:**
* Number of wires: Any (the operation can act on any number of wires)
* Number of parameters: 0
* Gradient recipe: None
Args:
wires (int or Iterable[Number, str]]): the wire(s) the operation acts on
**Example**
The quantum Fourier transform is applied by specifying the corresponding wires:
.. code-block::
wires = 3
dev = qml.device('default.qubit',wires=wires)
@qml.qnode(dev)
def circuit_qft(basis_state):
qml.BasisState(basis_state, wires=range(wires))
qml.QFT(wires=range(wires))
return qml.state()
.. code-block:: pycon
>>> circuit_qft(np.array([1.0, 0.0, 0.0]))
[ 0.35355339+0.j -0.35355339+0.j 0.35355339+0.j -0.35355339+0.j
0.35355339+0.j -0.35355339+0.j 0.35355339+0.j -0.35355339+0.j]
.. details::
:title: Semiclassical Quantum Fourier transform
If the QFT is the last subroutine applied within a circuit, it can be
replaced by a
`semiclassical Fourier transform <https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.3228>`_.
It makes use of mid-circuit measurements and dynamic circuit control based
on the measurement values, allowing to reduce the number of two-qubit gates.
As an example, consider the following circuit implementing addition between two
numbers with ``n_wires`` bits (modulo ``2**n_wires``):
.. code-block:: python
dev = qml.device("default.qubit", shots=1)
@qml.qnode(dev)
def qft_add(m, k, n_wires):
qml.BasisEmbedding(m, wires=range(n_wires))
qml.adjoint(qml.QFT)(wires=range(n_wires))
for j in range(n_wires):
qml.RZ(-k * np.pi / (2**j), wires=j)
qml.QFT(wires=range(n_wires))
return qml.sample()
.. code-block:: pycon
>>> qft_add(7, 3, n_wires=4)
[1 0 1 0]
The last building block of this circuit is a QFT, so we may replace it by its
semiclassical counterpart:
.. code-block:: python
def scFT(n_wires):
'''semiclassical Fourier transform'''
for w in range(n_wires-1):
qml.Hadamard(w)
mcm = qml.measure(w)
for m in range(w + 1, n_wires):
qml.cond(mcm, qml.PhaseShift)(np.pi / 2 ** (m + 1), wires=m)
qml.Hadamard(n_wires-1)
@qml.qnode(dev)
def scFT_add(m, k, n_wires):
qml.BasisEmbedding(m, wires=range(n_wires))
qml.adjoint(qml.QFT)(wires=range(n_wires))
for j in range(n_wires):
qml.RZ(-k * np.pi / (2**j), wires=j)
scFT(n_wires)
# Revert wire order because of PL's QFT convention
return qml.sample(wires=list(range(n_wires-1, -1, -1)))
.. code-block:: pycon
>>> scFT_add(7, 3, n_wires=4)
[1 0 1 0]
"""
num_wires = AnyWires
grad_method = None
def __init__(self, wires: WiresLike, id=None):
wires = Wires(wires)
self.hyperparameters["n_wires"] = len(wires)
super().__init__(wires=wires, id=id)
def _flatten(self):
return tuple(), (self.wires, tuple())
@property
def num_params(self):
return 0
[docs] @staticmethod
@functools.lru_cache()
def compute_matrix(n_wires): # pylint: disable=arguments-differ
return np.fft.ifft(np.eye(2**n_wires), norm="ortho")
[docs] @staticmethod
def compute_decomposition(wires: WiresLike): # pylint: disable=arguments-differ,unused-argument
r"""Representation of the operator as a product of other operators (static method).
.. math:: O = O_1 O_2 \dots O_n.
.. seealso:: :meth:`~.QFT.decomposition`.
Args:
wires (Iterable, Wires): wires that the operator acts on
Returns:
list[Operator]: decomposition of the operator
**Example:**
>>> qml.QFT.compute_decomposition(wires=(0,1,2))
[H(0),
ControlledPhaseShift(1.5707963267948966, wires=Wires([1, 0])),
ControlledPhaseShift(0.7853981633974483, wires=Wires([2, 0])),
H(1),
ControlledPhaseShift(1.5707963267948966, wires=Wires([2, 1])),
H(2),
SWAP(wires=[0, 2])]
"""
wires = Wires(wires)
n_wires = len(wires)
shifts = [2 * np.pi * 2**-i for i in range(2, n_wires + 1)]
shift_len = len(shifts)
decomp_ops = []
for i, wire in enumerate(wires):
decomp_ops.append(qml.Hadamard(wire))
for shift, control_wire in zip(shifts[: shift_len - i], wires[i + 1 :]):
op = qml.ControlledPhaseShift(shift, wires=[control_wire, wire])
decomp_ops.append(op)
first_half_wires = wires[: n_wires // 2]
last_half_wires = wires[-(n_wires // 2) :]
for wire1, wire2 in zip(first_half_wires, reversed(last_half_wires)):
swap = qml.SWAP(wires=[wire1, wire2])
decomp_ops.append(swap)
return decomp_ops
_modules/pennylane/templates/subroutines/qft
Download Python script
Download Notebook
View on GitHub