Source code for pennylane.templates.subroutines.qft

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This submodule contains the template for QFT.
"""
# pylint:disable=abstract-method,arguments-differ,protected-access

import functools

import numpy as np

import pennylane as qml
from pennylane.operation import AnyWires, Operation
from pennylane.wires import Wires, WiresLike


[docs]class QFT(Operation): r"""QFT(wires) Apply a quantum Fourier transform (QFT). For the :math:`N`-qubit computational basis state :math:`|m\rangle`, the QFT performs the transformation .. math:: |m\rangle \rightarrow \frac{1}{\sqrt{2^{N}}}\sum_{n=0}^{2^{N} - 1}\omega_{N}^{mn} |n\rangle, where :math:`\omega_{N} = e^{\frac{2 \pi i}{2^{N}}}` is the :math:`2^{N}`-th root of unity. **Details:** * Number of wires: Any (the operation can act on any number of wires) * Number of parameters: 0 * Gradient recipe: None Args: wires (int or Iterable[Number, str]]): the wire(s) the operation acts on **Example** The quantum Fourier transform is applied by specifying the corresponding wires: .. code-block:: wires = 3 dev = qml.device('default.qubit',wires=wires) @qml.qnode(dev) def circuit_qft(basis_state): qml.BasisState(basis_state, wires=range(wires)) qml.QFT(wires=range(wires)) return qml.state() .. code-block:: pycon >>> circuit_qft(np.array([1.0, 0.0, 0.0])) [ 0.35355339+0.j -0.35355339+0.j 0.35355339+0.j -0.35355339+0.j 0.35355339+0.j -0.35355339+0.j 0.35355339+0.j -0.35355339+0.j] .. details:: :title: Semiclassical Quantum Fourier transform If the QFT is the last subroutine applied within a circuit, it can be replaced by a `semiclassical Fourier transform <https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.3228>`_. It makes use of mid-circuit measurements and dynamic circuit control based on the measurement values, allowing to reduce the number of two-qubit gates. As an example, consider the following circuit implementing addition between two numbers with ``n_wires`` bits (modulo ``2**n_wires``): .. code-block:: python dev = qml.device("default.qubit", shots=1) @qml.qnode(dev) def qft_add(m, k, n_wires): qml.BasisEmbedding(m, wires=range(n_wires)) qml.adjoint(qml.QFT)(wires=range(n_wires)) for j in range(n_wires): qml.RZ(-k * np.pi / (2**j), wires=j) qml.QFT(wires=range(n_wires)) return qml.sample() .. code-block:: pycon >>> qft_add(7, 3, n_wires=4) [1 0 1 0] The last building block of this circuit is a QFT, so we may replace it by its semiclassical counterpart: .. code-block:: python def scFT(n_wires): '''semiclassical Fourier transform''' for w in range(n_wires-1): qml.Hadamard(w) mcm = qml.measure(w) for m in range(w + 1, n_wires): qml.cond(mcm, qml.PhaseShift)(np.pi / 2 ** (m + 1), wires=m) qml.Hadamard(n_wires-1) @qml.qnode(dev) def scFT_add(m, k, n_wires): qml.BasisEmbedding(m, wires=range(n_wires)) qml.adjoint(qml.QFT)(wires=range(n_wires)) for j in range(n_wires): qml.RZ(-k * np.pi / (2**j), wires=j) scFT(n_wires) # Revert wire order because of PL's QFT convention return qml.sample(wires=list(range(n_wires-1, -1, -1))) .. code-block:: pycon >>> scFT_add(7, 3, n_wires=4) [1 0 1 0] """ num_wires = AnyWires grad_method = None def __init__(self, wires: WiresLike, id=None): wires = Wires(wires) self.hyperparameters["n_wires"] = len(wires) super().__init__(wires=wires, id=id) def _flatten(self): return tuple(), (self.wires, tuple()) @property def num_params(self): return 0
[docs] def decomposition(self): return self.compute_decomposition(wires=self.wires)
[docs] @staticmethod @functools.lru_cache() def compute_matrix(n_wires): # pylint: disable=arguments-differ return np.fft.ifft(np.eye(2**n_wires), norm="ortho")
[docs] @staticmethod def compute_decomposition(wires: WiresLike): # pylint: disable=arguments-differ,unused-argument r"""Representation of the operator as a product of other operators (static method). .. math:: O = O_1 O_2 \dots O_n. .. seealso:: :meth:`~.QFT.decomposition`. Args: wires (Iterable, Wires): wires that the operator acts on Returns: list[Operator]: decomposition of the operator **Example:** >>> qml.QFT.compute_decomposition(wires=(0,1,2)) [H(0), ControlledPhaseShift(1.5707963267948966, wires=Wires([1, 0])), ControlledPhaseShift(0.7853981633974483, wires=Wires([2, 0])), H(1), ControlledPhaseShift(1.5707963267948966, wires=Wires([2, 1])), H(2), SWAP(wires=[0, 2])] """ wires = Wires(wires) n_wires = len(wires) shifts = [2 * np.pi * 2**-i for i in range(2, n_wires + 1)] shift_len = len(shifts) decomp_ops = [] for i, wire in enumerate(wires): decomp_ops.append(qml.Hadamard(wire)) for shift, control_wire in zip(shifts[: shift_len - i], wires[i + 1 :]): op = qml.ControlledPhaseShift(shift, wires=[control_wire, wire]) decomp_ops.append(op) first_half_wires = wires[: n_wires // 2] last_half_wires = wires[-(n_wires // 2) :] for wire1, wire2 in zip(first_half_wires, reversed(last_half_wires)): swap = qml.SWAP(wires=[wire1, wire2]) decomp_ops.append(swap) return decomp_ops