Source code for pennylane.transforms.compile

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Code for the high-level quantum function transform that executes compilation."""
# pylint: disable=too-many-branches
from functools import partial

import pennylane as qml
from pennylane.ops import __all__ as all_ops
from pennylane.queuing import QueuingManager
from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.transforms.core import TransformDispatcher, transform
from pennylane.transforms.optimization import (
    cancel_inverses,
    commute_controlled,
    merge_rotations,
    remove_barrier,
)
from pennylane.typing import PostprocessingFn

default_pipeline = [commute_controlled, cancel_inverses, merge_rotations, remove_barrier]


[docs]@transform def compile( tape: QuantumScript, pipeline=None, basis_set=None, num_passes=1 ) -> tuple[QuantumScriptBatch, PostprocessingFn]: """Compile a circuit by applying a series of transforms to a quantum function. The default set of transforms includes (in order): - pushing all commuting single-qubit gates as far right as possible (:func:`~pennylane.transforms.commute_controlled`) - cancellation of adjacent inverse gates (:func:`~pennylane.transforms.cancel_inverses`) - merging adjacent rotations of the same type (:func:`~pennylane.transforms.merge_rotations`) Args: tape (QNode or QuantumTape or Callable): A quantum circuit. pipeline (list[Callable]): A list of tape and/or quantum function transforms to apply. basis_set (list[str]): A list of basis gates. When expanding the tape, expansion will continue until gates in the specific set are reached. If no basis set is specified, a default of ``pennylane.ops.__all__`` will be used. This decomposes templates and operator arithmetic. num_passes (int): The number of times to apply the set of transforms in ``pipeline``. The default is to perform each transform once; however, doing so may produce a new circuit where applying the set of transforms again may yield further improvement, so the number of such passes can be adjusted. Returns: qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]: The compiled circuit. The output type is explained in :func:`qml.transform <pennylane.transform>`. **Example** >>> dev = qml.device('default.qubit', wires=[0, 1, 2]) You can apply the transform directly on a :class:`QNode`: .. code-block:: python @qml.compile @qml.qnode(device=dev) def circuit(x, y, z): qml.Hadamard(wires=0) qml.Hadamard(wires=1) qml.Hadamard(wires=2) qml.RZ(z, wires=2) qml.CNOT(wires=[2, 1]) qml.RX(z, wires=0) qml.CNOT(wires=[1, 0]) qml.RX(x, wires=0) qml.CNOT(wires=[1, 0]) qml.RZ(-z, wires=2) qml.RX(y, wires=2) qml.Y(2) qml.CY(wires=[1, 2]) return qml.expval(qml.Z(0)) The default compilation pipeline is applied before execution. Consider the following quantum function: .. code-block:: python def qfunc(x, y, z): qml.Hadamard(wires=0) qml.Hadamard(wires=1) qml.Hadamard(wires=2) qml.RZ(z, wires=2) qml.CNOT(wires=[2, 1]) qml.RX(z, wires=0) qml.CNOT(wires=[1, 0]) qml.RX(x, wires=0) qml.CNOT(wires=[1, 0]) qml.RZ(-z, wires=2) qml.RX(y, wires=2) qml.Y(2) qml.CY(wires=[1, 2]) return qml.expval(qml.Z(0)) Visually, the original function looks like this: >>> qnode = qml.QNode(qfunc, dev) >>> print(qml.draw(qnode)(0.2, 0.3, 0.4)) 0: ──H──RX(0.40)────╭X──────────RX(0.20)─╭X────┤ <Z> 1: ──H───────────╭X─╰●───────────────────╰●─╭●─┤ 2: ──H──RZ(0.40)─╰●──RZ(-0.40)──RX(0.30)──Y─╰Y─┤ We can compile it down to a smaller set of gates using the ``qml.compile`` transform. >>> compiled_qnode = qml.compile(qnode) >>> print(qml.draw(compiled_qnode)(0.2, 0.3, 0.4)) 0: ──H──RX(0.60)─────────────────┤ <Z> 1: ──H─╭X──────────────────╭●────┤ 2: ──H─╰●─────────RX(0.30)─╰Y──Y─┤ You can change up the set of transforms by passing a custom ``pipeline`` to ``qml.compile``. The pipeline is a list of transform functions. Furthermore, you can specify a number of passes (repetitions of the pipeline), and a list of gates into which the compiler will first attempt to decompose the existing operations prior to applying any optimization transforms. .. code-block:: python3 compiled_qnode = qml.compile( qnode, pipeline=[ partial(qml.transforms.commute_controlled, direction="left"), partial(qml.transforms.merge_rotations, atol=1e-6), qml.transforms.cancel_inverses ], basis_set=["CNOT", "RX", "RY", "RZ"], num_passes=2 ) print(qml.draw(compiled_qnode)(0.2, 0.3, 0.4)) .. code-block:: 0: ──RZ(1.57)──RX(1.57)──RZ(1.57)──RX(0.60)───────────────────────────────────────────────────── 1: ──RZ(1.57)──RX(1.57)──RZ(1.57)─╭X─────────RZ(1.57)─────────────────────────────────────────╭● 2: ──RZ(1.57)──RX(1.57)──RZ(1.57)─╰●─────────RX(0.30)──RZ(1.57)──RY(3.14)──RZ(1.57)──RY(1.57)─╰X ────────────────┤ <Z> ─────────────╭●─┤ ───RY(-1.57)─╰X─┤ """ # Ensure that everything in the pipeline is a valid qfunc or tape transform if pipeline is None: pipeline = default_pipeline else: for p in pipeline: p_func = p.func if isinstance(p, partial) else p if not isinstance(p_func, TransformDispatcher): raise ValueError("Invalid transform function {p} passed to compile.") if num_passes < 1 or not isinstance(num_passes, int): raise ValueError("Number of passes must be an integer with value at least 1.") # Expand the tape; this is done to unroll any templates that may be present, # as well as to decompose over a specified basis set # First, though, we have to stop whatever tape may be recording so that we # don't queue anything as a result of the expansion or transform pipeline with QueuingManager.stop_recording(): basis_set = basis_set or all_ops def stop_at(obj): if not isinstance(obj, qml.operation.Operator): return True if not obj.has_decomposition: return True return obj.name in basis_set and (not getattr(obj, "only_visual", False)) [expanded_tape], _ = qml.devices.preprocess.decompose( tape, stopping_condition=stop_at, name="compile", error=qml.operation.DecompositionUndefinedError, skip_initial_state_prep=False, ) # Apply the full set of compilation transforms num_passes times for _ in range(num_passes): for transf in pipeline: [expanded_tape], _ = transf(expanded_tape) def null_postprocessing(results): """A postprocesing function returned by a transform that only converts the batch of results into a result for a single ``QuantumTape``. """ return results[0] return [expanded_tape], null_postprocessing