Source code for pennylane.transforms.compile
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Code for the high-level quantum function transform that executes compilation."""
# pylint: disable=too-many-branches
from functools import partial
import pennylane as qml
from pennylane.ops import __all__ as all_ops
from pennylane.queuing import QueuingManager
from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.transforms.core import TransformDispatcher, transform
from pennylane.transforms.optimization import (
cancel_inverses,
commute_controlled,
merge_rotations,
remove_barrier,
)
from pennylane.typing import PostprocessingFn
default_pipeline = [commute_controlled, cancel_inverses, merge_rotations, remove_barrier]
[docs]@transform
def compile(
tape: QuantumScript, pipeline=None, basis_set=None, num_passes=1
) -> tuple[QuantumScriptBatch, PostprocessingFn]:
"""Compile a circuit by applying a series of transforms to a quantum function.
The default set of transforms includes (in order):
- pushing all commuting single-qubit gates as far right as possible
(:func:`~pennylane.transforms.commute_controlled`)
- cancellation of adjacent inverse gates
(:func:`~pennylane.transforms.cancel_inverses`)
- merging adjacent rotations of the same type
(:func:`~pennylane.transforms.merge_rotations`)
Args:
tape (QNode or QuantumTape or Callable): A quantum circuit.
pipeline (list[Callable]): A list of
tape and/or quantum function transforms to apply.
basis_set (list[str]): A list of basis gates. When expanding the tape,
expansion will continue until gates in the specific set are
reached. If no basis set is specified, a default of
``pennylane.ops.__all__`` will be used. This decomposes templates and
operator arithmetic.
num_passes (int): The number of times to apply the set of transforms in
``pipeline``. The default is to perform each transform once;
however, doing so may produce a new circuit where applying the set
of transforms again may yield further improvement, so the number of
such passes can be adjusted.
Returns:
qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]: The compiled circuit. The output type is explained in :func:`qml.transform <pennylane.transform>`.
**Example**
>>> dev = qml.device('default.qubit', wires=[0, 1, 2])
You can apply the transform directly on a :class:`QNode`:
.. code-block:: python
@qml.compile
@qml.qnode(device=dev)
def circuit(x, y, z):
qml.Hadamard(wires=0)
qml.Hadamard(wires=1)
qml.Hadamard(wires=2)
qml.RZ(z, wires=2)
qml.CNOT(wires=[2, 1])
qml.RX(z, wires=0)
qml.CNOT(wires=[1, 0])
qml.RX(x, wires=0)
qml.CNOT(wires=[1, 0])
qml.RZ(-z, wires=2)
qml.RX(y, wires=2)
qml.Y(2)
qml.CY(wires=[1, 2])
return qml.expval(qml.Z(0))
The default compilation pipeline is applied before execution.
Consider the following quantum function:
.. code-block:: python
def qfunc(x, y, z):
qml.Hadamard(wires=0)
qml.Hadamard(wires=1)
qml.Hadamard(wires=2)
qml.RZ(z, wires=2)
qml.CNOT(wires=[2, 1])
qml.RX(z, wires=0)
qml.CNOT(wires=[1, 0])
qml.RX(x, wires=0)
qml.CNOT(wires=[1, 0])
qml.RZ(-z, wires=2)
qml.RX(y, wires=2)
qml.Y(2)
qml.CY(wires=[1, 2])
return qml.expval(qml.Z(0))
Visually, the original function looks like this:
>>> qnode = qml.QNode(qfunc, dev)
>>> print(qml.draw(qnode)(0.2, 0.3, 0.4))
0: ──H──RX(0.40)────╭X──────────RX(0.20)─╭X────┤ <Z>
1: ──H───────────╭X─╰●───────────────────╰●─╭●─┤
2: ──H──RZ(0.40)─╰●──RZ(-0.40)──RX(0.30)──Y─╰Y─┤
We can compile it down to a smaller set of gates using the ``qml.compile``
transform.
>>> compiled_qnode = qml.compile(qnode)
>>> print(qml.draw(compiled_qnode)(0.2, 0.3, 0.4))
0: ──H──RX(0.60)─────────────────┤ <Z>
1: ──H─╭X──────────────────╭●────┤
2: ──H─╰●─────────RX(0.30)─╰Y──Y─┤
You can change up the set of transforms by passing a custom ``pipeline`` to
``qml.compile``. The pipeline is a list of transform functions. Furthermore,
you can specify a number of passes (repetitions of the pipeline), and a list
of gates into which the compiler will first attempt to decompose the
existing operations prior to applying any optimization transforms.
.. code-block:: python3
compiled_qnode = qml.compile(
qnode,
pipeline=[
partial(qml.transforms.commute_controlled, direction="left"),
partial(qml.transforms.merge_rotations, atol=1e-6),
qml.transforms.cancel_inverses
],
basis_set=["CNOT", "RX", "RY", "RZ"],
num_passes=2
)
print(qml.draw(compiled_qnode)(0.2, 0.3, 0.4))
.. code-block::
0: ──RZ(1.57)──RX(1.57)──RZ(1.57)──RX(0.60)─────────────────────────────────────────────────────
1: ──RZ(1.57)──RX(1.57)──RZ(1.57)─╭X─────────RZ(1.57)─────────────────────────────────────────╭●
2: ──RZ(1.57)──RX(1.57)──RZ(1.57)─╰●─────────RX(0.30)──RZ(1.57)──RY(3.14)──RZ(1.57)──RY(1.57)─╰X
────────────────┤ <Z>
─────────────╭●─┤
───RY(-1.57)─╰X─┤
"""
# Ensure that everything in the pipeline is a valid qfunc or tape transform
if pipeline is None:
pipeline = default_pipeline
else:
for p in pipeline:
p_func = p.func if isinstance(p, partial) else p
if not isinstance(p_func, TransformDispatcher):
raise ValueError("Invalid transform function {p} passed to compile.")
if num_passes < 1 or not isinstance(num_passes, int):
raise ValueError("Number of passes must be an integer with value at least 1.")
# Expand the tape; this is done to unroll any templates that may be present,
# as well as to decompose over a specified basis set
# First, though, we have to stop whatever tape may be recording so that we
# don't queue anything as a result of the expansion or transform pipeline
with QueuingManager.stop_recording():
basis_set = basis_set or all_ops
def stop_at(obj):
if not isinstance(obj, qml.operation.Operator):
return True
if not obj.has_decomposition:
return True
return obj.name in basis_set and (not getattr(obj, "only_visual", False))
[expanded_tape], _ = qml.devices.preprocess.decompose(
tape,
stopping_condition=stop_at,
name="compile",
error=qml.operation.DecompositionUndefinedError,
skip_initial_state_prep=False,
)
# Apply the full set of compilation transforms num_passes times
for _ in range(num_passes):
for transf in pipeline:
[expanded_tape], _ = transf(expanded_tape)
def null_postprocessing(results):
"""A postprocesing function returned by a transform that only converts the batch of results
into a result for a single ``QuantumTape``.
"""
return results[0]
return [expanded_tape], null_postprocessing
_modules/pennylane/transforms/compile
Download Python script
Download Notebook
View on GitHub