Source code for pennylane.transforms.decompositions.clifford_t_transform

# Copyright 2018-2023 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transform function for the Clifford+T decomposition."""

import math
import warnings
from itertools import product

import pennylane as qml
from pennylane.ops import Adjoint
from pennylane.ops.op_math.decompositions.solovay_kitaev import sk_decomposition
from pennylane.queuing import QueuingManager
from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.transforms.core import transform
from pennylane.transforms.optimization import (
    cancel_inverses,
    commute_controlled,
    merge_rotations,
    remove_barrier,
)
from pennylane.transforms.optimization.optimization_utils import _fuse_global_phases, find_next_gate
from pennylane.typing import PostprocessingFn

# Single qubits Clifford+T gates in PL
_CLIFFORD_T_ONE_GATES = [
    qml.Identity,
    qml.X,
    qml.Y,
    qml.Z,
    qml.Hadamard,
    qml.S,
    qml.SX,
    qml.T,
]

# Two qubits Clifford+T gates in PL
_CLIFFORD_T_TWO_GATES = [
    qml.CNOT,
    qml.CY,
    qml.CZ,
    qml.SWAP,
    qml.ISWAP,
]

# Single-parameter gates in PL
# note: _simplify_param makes use of their periodic nature,
# any additions to this, should be reflected there as well.
_PARAMETER_GATES = (qml.RX, qml.RY, qml.RZ, qml.Rot, qml.PhaseShift)

# Clifford+T gate set
_CLIFFORD_T_GATES = tuple(_CLIFFORD_T_ONE_GATES + _CLIFFORD_T_TWO_GATES) + (qml.GlobalPhase,)

# Gates to be skipped during decomposition
_SKIP_OP_TYPES = (qml.Barrier, qml.Snapshot, qml.WireCut)


def _check_clifford_op(op, use_decomposition=False):
    r"""Checks if an operator is Clifford or not.

    For a given unitary operator :math:`U` acting on :math:`N` qubits, this method checks that the
    transformation :math:`UPU^{\dagger}` maps the Pauli tensor products :math:`P = {I, X, Y, Z}^{\otimes N}`
    to Pauli tensor products using the decomposition of the matrix for :math:`U` in the Pauli basis.

    Args:
        op (~pennylane.operation.Operation): the operator that needs to be tested
        use_decomposition (bool): if ``True``, use operator's decomposition to compute the matrix, in case
            it doesn't define a ``compute_matrix`` method. Default is ``False``.

    Returns:
        Bool that represents whether the provided operator is Clifford or not.
    """

    # Check if matrix can be calculated for the operator
    if (not op.has_matrix and not use_decomposition) or (
        use_decomposition and not qml.tape.QuantumScript(op.decomposition()).wires
    ):
        return False

    # Compute the LCUs for the operator in Pauli basis
    pauli_terms = qml.pauli_decompose(qml.matrix(op), wire_order=op.wires, check_hermitian=False)
    pauli_terms_adj = qml.Hamiltonian(qml.math.conj(pauli_terms.coeffs), pauli_terms.ops)

    # Build Pauli tensor products P in the Hamiltonian form
    def pauli_group(x):
        return [qml.Identity(x), qml.X(x), qml.Y(x), qml.Z(x)]

    # Build PauliSentence and Hamiltonians representations for set P
    pauli_sens = [
        qml.pauli.pauli_sentence(qml.prod(*pauli))
        for pauli in product(*(pauli_group(idx) for idx in op.wires))
    ]
    pauli_ops = (pauli_sen.operation(wire_order=op.wires) for pauli_sen in pauli_sens)

    # Perform U@P@U^\dagger and check if the result exists in set P
    for pauli_prod in product([pauli_terms], pauli_ops, [pauli_terms_adj]):
        # hopefully op_math.prod scales better than matrix multiplication, i.e., O((2^N)^3)
        upu = qml.pauli.pauli_sentence(qml.prod(*pauli_prod))
        upu.simplify()
        # Pauli sum always lie outside set P
        if len(upu) != 1:
            return False

    return True


def check_clifford_t(op, use_decomposition=False):
    r"""Checks whether the gate is in the standard Clifford+T basis.

    For a given unitary operator :math:`U` acting on :math:`N` qubits, which is not a T-gate,
    this method checks that the transformation :math:`UPU^{\dagger}` maps the Pauli tensor products
    :math:`P = {I, X, Y, Z}^{\otimes N}` to Pauli tensor products using the decomposition of the
    matrix for :math:`U` in the Pauli basis.

    Args:
        op (~pennylane.operation.Operation): the operator that needs to be checked
        use_decomposition (bool): if ``True``, use operator's decomposition to compute the matrix, in case
            it doesn't define a ``compute_matrix`` method. Default is ``False``.

    Returns:
        Bool that represents whether the provided operator is Clifford+T or not.
    """
    # Get the base operation for an adjointed operation
    if isinstance(op, Adjoint):
        base = op.base
    else:
        base = None

    # Save time and check from the pre-computed list
    if isinstance(op, _CLIFFORD_T_GATES) or isinstance(base, _CLIFFORD_T_GATES):
        return True

    # Save time and check from the parameter of rotation gates
    if isinstance(op, _PARAMETER_GATES) or isinstance(base, _PARAMETER_GATES):
        theta = op.data[0]
        return (
            False
            if qml.math.is_abstract(theta)
            else qml.math.allclose(qml.math.mod(theta, math.pi), 0.0)
        )

    return _check_clifford_op(op, use_decomposition=use_decomposition)


def _simplify_param(theta, gate):
    r"""Check if the parameter allows simplification for the rotation gate.

    For the cases where theta is an integer multiple of π: (a) returns a global phase
    when even, and (b) returns combination of provided gate with global phase when odd.
    In rest of the other cases it would return None.
    """
    if qml.math.is_abstract(theta):  # pragma: no cover
        return None

    if qml.math.allclose(theta, 0.0, atol=1e-6):
        return [qml.GlobalPhase(0.0)]

    rem_, mod_ = qml.math.divide(theta, math.pi), qml.math.mod(theta, math.pi)
    if qml.math.allclose(mod_, 0.0, atol=1e-6):
        ops = [qml.GlobalPhase(theta / 2)]
        if qml.math.allclose(qml.math.mod(rem_, 2), 1.0, atol=1e-6):
            ops.append(gate)
        return ops

    return None


# pylint: disable= too-many-branches,
def _rot_decompose(op):
    r"""Decomposes a rotation operation: :class:`~.Rot`, :class:`~.RX`, :class:`~.RY`, :class:`~.RZ`,
    :class:`~.PhaseShift` into a basis composed of :class:`~.RZ`, :class:`~.S`, and :class:`~.Hadamard`.
    """
    d_ops = []
    # Extend for Rot operation with Rz.Ry.Rz decompositions
    if isinstance(op, qml.Rot):
        (phi, theta, omega), wires = op.parameters, op.wires
        for dec in [qml.RZ(phi, wires), qml.RY(theta, wires), qml.RZ(omega, wires)]:
            d_ops.extend(_rot_decompose(dec))
        return d_ops

    (theta,), wires = op.data, op.wires
    if isinstance(op, qml.ops.Adjoint):  # pylint: disable=no-member
        ops_ = _rot_decompose(op.base.adjoint())
    elif isinstance(op, qml.RX):
        ops_ = _simplify_param(theta, qml.X(wires))
        if ops_ is None:  # Use Rx = H @ Rz @ H
            ops_ = [qml.Hadamard(wires), qml.RZ(theta, wires), qml.Hadamard(wires)]
    elif isinstance(op, qml.RY):
        ops_ = _simplify_param(theta, qml.Y(wires))
        if ops_ is None:  # Use Ry = S @ H @ Rz @ H @ S.adjoint()
            ops_ = [
                qml.S(wires),
                qml.Hadamard(wires),
                qml.RZ(theta, wires),
                qml.Hadamard(wires),
                qml.adjoint(qml.S(wires)),
            ][::-1]
    elif isinstance(op, qml.RZ):
        ops_ = _simplify_param(theta, qml.Z(wires))
        if ops_ is None:
            ops_ = [qml.RZ(theta, wires)]
    elif isinstance(op, qml.PhaseShift):
        ops_ = _simplify_param(theta, qml.Z(wires))
        if ops_ is None:
            ops_ = [qml.RZ(theta, wires=wires), qml.GlobalPhase(-theta / 2)]
        else:
            ops_.append(qml.GlobalPhase(-theta / 2))

    else:
        raise ValueError(
            f"Operation {op} is not a supported Pauli rotation: qml.RX, qml.RY, qml.RZ, qml.Rot and qml.PhaseShift."
        )

    d_ops.extend(ops_)
    return d_ops


def _one_qubit_decompose(op):
    r"""Decomposition for single qubit operations using combination of :class:`~.RZ`, :class:`~.S`, and
    :class:`~.Hadamard`."""

    with warnings.catch_warnings():
        warnings.simplefilter("ignore", RuntimeWarning)
        sd_ops = qml.ops.one_qubit_decomposition(
            qml.matrix(op), op.wires, "ZXZ", return_global_phase=True
        )
    # Get the global phase
    gphase_op = sd_ops.pop()

    # Decompose the rotation gates
    d_ops = []
    for sd_op in sd_ops:
        d_ops.extend(_rot_decompose(sd_op) if sd_op.num_params else [sd_op])

    return d_ops, gphase_op


def _two_qubit_decompose(op):
    r"""Decomposition for two qubit operations using combination of :class:`~.RZ`, :class:`~.S`,
    :class:`~.Hadamard`, and :class:`~.CNOT`."""

    with warnings.catch_warnings():
        warnings.simplefilter("ignore", RuntimeWarning)
        td_ops = qml.ops.two_qubit_decomposition(qml.matrix(op), op.wires)

    d_ops = []
    for td_op in td_ops:
        d_ops.extend(
            _rot_decompose(td_op) if td_op.num_params and td_op.num_wires == 1 else [td_op]
        )

    return d_ops


def _merge_param_gates(operations, merge_ops=None):
    """Merge the provided parametrized gates on the same wires that are adjacent to each other"""

    copied_ops = operations.copy()
    merged_ops, number_ops = [], 0

    while len(copied_ops) > 0:
        curr_gate = copied_ops.pop(0)

        # If gate is not to be merged, let it go
        if merge_ops is not None and curr_gate.name not in merge_ops:
            merged_ops.append(curr_gate)
            continue

        # If gate is in the merge_ops, update counter
        if curr_gate.name in merge_ops:
            number_ops += 1

        # Find the next gate that acts on the same wires
        next_gate_idx = find_next_gate(curr_gate.wires, copied_ops)
        if next_gate_idx is None:
            merged_ops.append(curr_gate)
            continue

        # Initialize the current angle and iterate until end of merge
        curr_params = curr_gate.parameters
        curr_intrfc = qml.math.get_deep_interface(curr_gate.parameters)
        cumulative_angles = qml.math.array(curr_params, dtype=float, like=curr_intrfc)
        next_gate = copied_ops[next_gate_idx]
        while curr_gate.name == next_gate.name and curr_gate.wires == next_gate.wires:
            cumulative_angles += qml.math.array(next_gate.parameters, like=curr_intrfc)
            # Check if the subsequent gate exists in the vicinity
            copied_ops.pop(next_gate_idx)
            next_gate_idx = find_next_gate(curr_gate.wires, copied_ops)
            if next_gate_idx is None:
                break
            next_gate = copied_ops[next_gate_idx]

        # Replace the current gate, add it to merged list and pop it from orginal one
        merged_ops.append(curr_gate.__class__(*cumulative_angles, wires=curr_gate.wires))

    return merged_ops, number_ops


# pylint: disable= too-many-nested-blocks, too-many-branches, too-many-statements, unnecessary-lambda-assignment
[docs]@transform def clifford_t_decomposition( tape: QuantumScript, epsilon=1e-4, method="sk", **method_kwargs, ) -> tuple[QuantumScriptBatch, PostprocessingFn]: r"""Decomposes a circuit into the Clifford+T basis. This method first decomposes the gate operations to a basis comprised of Clifford, :class:`~.T`, :class:`~.RZ` and :class:`~.GlobalPhase` operations (and their adjoints). The Clifford gates include the following PennyLane operations: - Single qubit gates - :class:`~.Identity`, :class:`~.PauliX`, :class:`~.PauliY`, :class:`~.PauliZ`, :class:`~.SX`, :class:`~.S`, and :class:`~.Hadamard`. - Two qubit gates - :class:`~.CNOT`, :class:`~.CY`, :class:`~.CZ`, :class:`~.SWAP`, and :class:`~.ISWAP`. Then, the leftover single qubit :class:`~.RZ` operations are approximated in the Clifford+T basis with :math:`\epsilon > 0` error. By default, we use the Solovay-Kitaev algorithm described in `Dawson and Nielsen (2005) <https://arxiv.org/abs/quant-ph/0505030>`_ for this. Args: tape (QNode or QuantumTape or Callable): The quantum circuit to be decomposed. epsilon (float): The maximum permissible operator norm error of the complete circuit decomposition. Defaults to ``0.0001``. method (str): Method to be used for Clifford+T decomposition. Default value is ``"sk"`` for Solovay-Kitaev. **method_kwargs: Keyword argument to pass options for the ``method`` used for decompositions. Returns: qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]: The transformed circuit as described in the :func:`qml.transform <pennylane.transform>`. **Keyword Arguments** - Solovay-Kitaev decomposition -- **max_depth** (int), **basis_set** (list[str]), **basis_length** (int) -- arguments for the ``"sk"`` method, where the decomposition is performed using the :func:`~.sk_decomposition` method. Raises: ValueError: If a gate operation does not have a decomposition when required. NotImplementedError: If chosen decomposition ``method`` is not supported. .. seealso:: :func:`~.sk_decomposition` for Solovay-Kitaev decomposition. **Example** .. code-block:: python3 @qml.qnode(qml.device("default.qubit")) def circuit(x, y): qml.RX(x, 0) qml.CNOT([0, 1]) qml.RY(y, 0) return qml.expval(qml.Z(0)) x, y = 1.1, 2.2 decomposed_circuit = qml.transforms.clifford_t_decomposition(circuit) result = circuit(x, y) approx = decomposed_circuit(x, y) >>> qml.math.allclose(result, approx, atol=1e-4) True """ with QueuingManager.stop_recording(): # Build the basis set and the pipeline for initial compilation pass basis_set = [op.__name__ for op in _PARAMETER_GATES + _CLIFFORD_T_GATES + _SKIP_OP_TYPES] pipelines = [remove_barrier, commute_controlled, cancel_inverses, merge_rotations] # Compile the tape according to depth provided by the user and expand it [compiled_tape], _ = qml.compile(tape, pipelines, basis_set=basis_set) # Now iterate over the expanded tape operations decomp_ops, gphase_ops = [], [] for op in compiled_tape.operations: # Check whether operation is to be skipped if isinstance(op, _SKIP_OP_TYPES): decomp_ops.append(op) # Check whether the operation is a global phase elif isinstance(op, qml.GlobalPhase): gphase_ops.append(op) # Check whether the operation is a Clifford or a T-gate elif op.name in basis_set and check_clifford_t(op): if op.num_params: decomp_ops.extend(_rot_decompose(op)) else: decomp_ops.append(op) # Decompose and then iteratively go deeper via DFS else: # Single qubit unitary decomposition with ZXZ rotations if op.num_wires == 1: if op.name in basis_set: d_ops = _rot_decompose(op) else: d_ops, g_op = _one_qubit_decompose(op) gphase_ops.append(g_op) decomp_ops.extend(d_ops) # Two qubit unitary decomposition with SU(4) rotations elif op.num_wires == 2: d_ops = _two_qubit_decompose(op) decomp_ops.extend(d_ops) # If we don't know how to decompose the operation else: raise ValueError( f"Cannot unroll {op} into the Clifford+T basis as no rule exists for its decomposition" ) # Merge RZ rotations together merged_ops, number_ops = _merge_param_gates(decomp_ops, merge_ops=["RZ"]) # Squeeze global phases into a single global phase new_operations = _fuse_global_phases(merged_ops + gphase_ops) # Compute the per-gate epsilon value epsilon /= number_ops or 1 # Every decomposition implementation should have the following shape: # def decompose_fn(op: Operator, epsilon: float, **method_kwargs) -> List[Operator] # note: the last operator in the decomposition must be a GlobalPhase # Build the approximation set for Solovay-Kitaev decomposition if method == "sk": decompose_fn = sk_decomposition else: raise NotImplementedError( f"Currently we only support Solovay-Kitaev ('sk') decomposition, got {method}" ) decomp_ops = [] phase = new_operations.pop().data[0] for op in new_operations: if isinstance(op, qml.RZ): clifford_ops = decompose_fn(op, epsilon, **method_kwargs) phase += qml.math.convert_like(clifford_ops.pop().data[0], phase) decomp_ops.extend(clifford_ops) else: decomp_ops.append(op) # check if phase is non-zero for non jax-jit cases if qml.math.is_abstract(phase) or not qml.math.allclose(phase, 0.0): decomp_ops.append(qml.GlobalPhase(phase)) # Construct a new tape with the expanded set of operations new_tape = compiled_tape.copy(operations=decomp_ops) # Perform a final attempt of simplification before return [new_tape], _ = cancel_inverses(new_tape) def null_postprocessing(results): """A postprocesing function returned by a transform that only converts the batch of results into a result for a single ``QuantumTape``. """ return results[0] return [new_tape], null_postprocessing