Source code for pennylane.transforms.dynamic_one_shot

# Copyright 2018-2024 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contains the batch dimension transform.
"""

import itertools

# pylint: disable=import-outside-toplevel
from collections import Counter
from collections.abc import Sequence

import numpy as np

import pennylane as qml
from pennylane.measurements import (
    CountsMP,
    ExpectationMP,
    MeasurementValue,
    MidMeasureMP,
    ProbabilityMP,
    SampleMP,
    VarianceMP,
)
from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.typing import PostprocessingFn, TensorLike

from .core import transform

fill_in_value = np.iinfo(np.int32).min


def is_mcm(operation):
    """Returns True if the operation is a mid-circuit measurement and False otherwise."""
    mcm = isinstance(operation, MidMeasureMP)
    return mcm or "MidCircuitMeasure" in str(type(operation))


def null_postprocessing(results):
    """A postprocessing function returned by a transform that only converts the batch of results
    into a result for a single ``QuantumTape``.
    """
    return results[0]


[docs]@transform def dynamic_one_shot(tape: QuantumScript, **kwargs) -> tuple[QuantumScriptBatch, PostprocessingFn]: """Transform a QNode to into several one-shot tapes to support dynamic circuit execution. This transform enables the ``"one-shot"`` mid-circuit measurement method. The ``"one-shot"`` method prompts the device to perform a series of one-shot executions, where in each execution, the ``qml.measure`` operation applies a probabilistic mid-circuit measurement to the circuit. This is in contrast with ``qml.defer_measurement``, which instead introduces an extra wire for each mid-circuit measurement. The ``"one-shot"`` method is favourable in the few-shots and several-mid-circuit-measurements limit, whereas ``qml.defer_measurements`` is favourable in the opposite limit. Args: tape (QNode or QuantumScript or Callable): a quantum circuit. Returns: qnode (QNode) or quantum function (Callable) or tuple[List[QuantumScript], function]: The transformed circuit as described in :func:`qml.transform <pennylane.transform>`. This circuit will provide the results of a dynamic execution. **Example** Most devices that support mid-circuit measurements will include this transform in its preprocessing automatically when applicable. When this is the case, any user-applied ``dynamic_one_shot`` transforms will be ignored. The recommended way to use dynamic one shot is to specify ``mcm_method="one-shot"`` in the ``qml.qnode`` decorator. .. code-block:: python dev = qml.device("default.qubit", shots=100) params = np.pi / 4 * np.ones(2) @qml.qnode(dev, mcm_method="one-shot", postselect_mode="fill-shots") def func(x, y): qml.RX(x, wires=0) m0 = qml.measure(0) qml.cond(m0, qml.RY)(y, wires=1) return qml.expval(op=m0) """ if not any(is_mcm(o) for o in tape.operations): return (tape,), null_postprocessing for m in tape.measurements: if not isinstance(m, (CountsMP, ExpectationMP, ProbabilityMP, SampleMP, VarianceMP)): raise TypeError( f"Native mid-circuit measurement mode does not support {type(m).__name__} " "measurements." ) _ = kwargs.get("device", None) if not tape.shots: raise qml.QuantumFunctionError("dynamic_one_shot is only supported with finite shots.") samples_present = any(isinstance(mp, SampleMP) for mp in tape.measurements) postselect_present = any(op.postselect is not None for op in tape.operations if is_mcm(op)) if postselect_present and samples_present and tape.batch_size is not None: raise ValueError( "Returning qml.sample is not supported when postselecting mid-circuit " "measurements with broadcasting" ) if (batch_size := tape.batch_size) is not None: tapes, broadcast_fn = qml.transforms.broadcast_expand(tape) else: tapes = [tape] broadcast_fn = None aux_tapes = [init_auxiliary_tape(t) for t in tapes] postselect_mode = kwargs.get("postselect_mode", None) def reshape_data(array): return qml.math.squeeze(qml.math.vstack(array)) def processing_fn(results, has_partitioned_shots=None, batched_results=None): if batched_results is None and batch_size is not None: # If broadcasting, recursively process the results for each batch. For each batch # there are tape.shots.total_shots results. The length of the first axis of final_results # will be batch_size. final_results = [] for result in results: final_results.append(processing_fn((result,), batched_results=False)) return broadcast_fn(final_results) if has_partitioned_shots is None and tape.shots.has_partitioned_shots: # If using shot vectors, recursively process the results for each shot bin. The length # of the first axis of final_results will be the length of the shot vector. results = list(results[0]) final_results = [] for s in tape.shots: final_results.append( processing_fn(results[0:s], has_partitioned_shots=False, batched_results=False) ) del results[0:s] return tuple(final_results) if not tape.shots.has_partitioned_shots: results = results[0] is_scalar = not isinstance(results[0], Sequence) if is_scalar: results = [reshape_data(tuple(results))] else: results = [ reshape_data(tuple(res[i] for res in results)) for i, _ in enumerate(results[0]) ] return parse_native_mid_circuit_measurements( tape, aux_tapes, results, postselect_mode=postselect_mode ) return aux_tapes, processing_fn
def get_legacy_capabilities(dev): """Gets the capabilities dictionary of a device.""" assert isinstance(dev, qml.devices.LegacyDeviceFacade) return dev.target_device.capabilities() def _supports_one_shot(dev: "qml.devices.Device"): """Checks whether a device supports one-shot.""" if isinstance(dev, qml.devices.LegacyDevice): return get_legacy_capabilities(dev).get("supports_mid_measure", False) return dev.name in ("default.qubit", "lightning.qubit") or ( dev.capabilities is not None and "one-shot" in dev.capabilities.supported_mcm_methods ) @dynamic_one_shot.custom_qnode_transform def _dynamic_one_shot_qnode(self, qnode, targs, tkwargs): """Custom qnode transform for ``dynamic_one_shot``.""" if tkwargs.get("device", None): raise ValueError( "Cannot provide a 'device' value directly to the dynamic_one_shot decorator " "when transforming a QNode." ) if qnode.device is not None: if not _supports_one_shot(qnode.device): raise TypeError( f"Device {qnode.device.name} does not support mid-circuit measurements and/or " "one-shot execution mode natively, and hence it does not support the " "dynamic_one_shot transform. 'default.qubit' and 'lightning.qubit' currently " "support mid-circuit measurements and the dynamic_one_shot transform." ) tkwargs.setdefault("device", qnode.device) return self.default_qnode_transform(qnode, targs, tkwargs) def init_auxiliary_tape(circuit: qml.tape.QuantumScript): """Creates an auxiliary circuit to perform one-shot mid-circuit measurement calculations. Measurements are replaced by SampleMP measurements on wires and observables found in the original measurements. Args: circuit (QuantumTape): The original QuantumScript Returns: QuantumScript: A copy of the circuit with modified measurements """ new_measurements = [] for m in circuit.measurements: if m.mv is None: if isinstance(m, VarianceMP): new_measurements.append(SampleMP(obs=m.obs)) else: new_measurements.append(m) for op in circuit.operations: if "MidCircuitMeasure" in str(type(op)): # pragma: no cover new_measurements.append(qml.sample(op.out_classical_tracers[0])) elif isinstance(op, MidMeasureMP): new_measurements.append(qml.sample(MeasurementValue([op], lambda res: res))) return qml.tape.QuantumScript( circuit.operations, new_measurements, shots=[1] * circuit.shots.total_shots, trainable_params=circuit.trainable_params, ) # pylint: disable=too-many-branches,too-many-statements def parse_native_mid_circuit_measurements( circuit: qml.tape.QuantumScript, aux_tapes: qml.tape.QuantumScript, results: TensorLike, postselect_mode=None, ): """Combines, gathers and normalizes the results of native mid-circuit measurement runs. Args: circuit (QuantumTape): The original ``QuantumScript``. aux_tapes (List[QuantumTape]): List of auxiliary ``QuantumScript`` objects. results (TensorLike): Array of measurement results. Returns: tuple(TensorLike): The results of the simulation. """ def measurement_with_no_shots(measurement): return ( np.nan * np.ones_like(measurement.eigvals()) if isinstance(measurement, ProbabilityMP) else np.nan ) interface = qml.math.get_deep_interface(results) interface = "numpy" if interface == "builtins" else interface interface = "tensorflow" if interface == "tf" else interface active_qjit = qml.compiler.active() all_mcms = [op for op in aux_tapes[0].operations if is_mcm(op)] n_mcms = len(all_mcms) mcm_samples = qml.math.hstack( tuple(qml.math.reshape(res, (-1, 1)) for res in results[-n_mcms:]) ) mcm_samples = qml.math.array(mcm_samples, like=interface) # Can't use boolean dtype array with tf, hence why conditionally setting items to 0 or 1 has_postselect = qml.math.array( [[op.postselect is not None for op in all_mcms]], like=interface, dtype=mcm_samples.dtype, ) postselect = qml.math.array( [[0 if op.postselect is None else op.postselect for op in all_mcms]], like=interface, dtype=mcm_samples.dtype, ) is_valid = qml.math.all(mcm_samples * has_postselect == postselect, axis=1) has_valid = qml.math.any(is_valid) mid_meas = [op for op in circuit.operations if is_mcm(op)] mcm_samples = [mcm_samples[:, i : i + 1] for i in range(n_mcms)] mcm_samples = dict((k, v) for k, v in zip(mid_meas, mcm_samples)) normalized_meas = [] m_count = 0 for m in circuit.measurements: if not isinstance(m, (CountsMP, ExpectationMP, ProbabilityMP, SampleMP, VarianceMP)): raise TypeError( f"Native mid-circuit measurement mode does not support {type(m).__name__} measurements." ) if interface != "jax" and m.mv is not None and not has_valid: meas = measurement_with_no_shots(m) elif m.mv is not None and active_qjit: meas = gather_mcm_qjit( m, mcm_samples, is_valid, postselect_mode=postselect_mode ) # pragma: no cover elif m.mv is not None: meas = gather_mcm(m, mcm_samples, is_valid, postselect_mode=postselect_mode) elif interface != "jax" and not has_valid: meas = measurement_with_no_shots(m) m_count += 1 else: result = results[m_count] if not isinstance(m, CountsMP): # We don't need to cast to arrays when using qml.counts. qml.math.array is not viable # as it assumes all elements of the input are of builtin python types and not belonging # to any particular interface result = qml.math.array(result, like=interface) if active_qjit: # pragma: no cover # `result` contains (bases, counts) need to return (basis, sum(counts)) where `is_valid` # Any row of `result[0]` contains basis, so we return `result[0][0]` # We return the sum of counts (`result[1]`) weighting by `is_valid`, which is `0` for invalid samples if isinstance(m, CountsMP): normalized_meas.append( ( result[0][0], qml.math.sum(result[1] * qml.math.reshape(is_valid, (-1, 1)), axis=0), ) ) m_count += 1 continue result = qml.math.squeeze(result) meas = gather_non_mcm(m, result, is_valid, postselect_mode=postselect_mode) m_count += 1 if isinstance(m, SampleMP): meas = qml.math.squeeze(meas) normalized_meas.append(meas) return tuple(normalized_meas) if len(normalized_meas) > 1 else normalized_meas[0] def gather_mcm_qjit(measurement, samples, is_valid, postselect_mode=None): # pragma: no cover """Process MCM measurements when the Catalyst compiler is active. Args: measurement (MeasurementProcess): measurement samples (dict): Mid-circuit measurement samples is_valid (TensorLike): Boolean array with the same shape as ``samples`` where the value at each index specifies whether or not the respective sample is valid. Returns: TensorLike: The combined measurement outcome """ found, meas = False, None for k, meas in samples.items(): if measurement.mv is k.out_classical_tracers[0]: found = True break if not found: raise LookupError("MCM not found") meas = qml.math.squeeze(meas) if isinstance(measurement, (CountsMP, ProbabilityMP)): interface = qml.math.get_interface(is_valid) sum_valid = qml.math.sum(is_valid) count_1 = qml.math.sum(meas * is_valid) if isinstance(measurement, CountsMP): return qml.math.array([0, 1], like=interface), qml.math.array( [sum_valid - count_1, count_1], like=interface ) if isinstance(measurement, ProbabilityMP): counts = qml.math.array([sum_valid - count_1, count_1], like=interface) return counts / sum_valid return gather_non_mcm(measurement, meas, is_valid, postselect_mode=postselect_mode) def gather_non_mcm(measurement, samples, is_valid, postselect_mode=None): """Combines, gathers and normalizes several measurements with trivial measurement values. Args: measurement (MeasurementProcess): measurement samples (TensorLike): Post-processed measurement samples is_valid (TensorLike): Boolean array with the same shape as ``samples`` where the value at each index specifies whether or not the respective sample is valid. Returns: TensorLike: The combined measurement outcome """ if isinstance(measurement, CountsMP): tmp = Counter() if measurement.all_outcomes: if isinstance(measurement.mv, Sequence): values = [list(m.branches.values()) for m in measurement.mv] values = list(itertools.product(*values)) tmp = Counter({"".join(map(str, v)): 0 for v in values}) else: values = [list(measurement.mv.branches.values())] values = list(itertools.product(*values)) tmp = Counter({float(*v): 0 for v in values}) for i, d in enumerate(samples): tmp.update( {k if isinstance(k, str) else float(k): v * is_valid[i] for k, v in d.items()} ) if not measurement.all_outcomes: tmp = Counter({k: v for k, v in tmp.items() if v > 0}) return dict(sorted(tmp.items())) if isinstance(measurement, SampleMP): if postselect_mode == "pad-invalid-samples" and samples.ndim == 2: is_valid = qml.math.reshape(is_valid, (-1, 1)) if postselect_mode == "pad-invalid-samples": return qml.math.where(is_valid, samples, fill_in_value) if qml.math.shape(samples) == (): # single shot case samples = qml.math.reshape(samples, (-1, 1)) return samples[is_valid] if (interface := qml.math.get_interface(is_valid)) == "tensorflow": # Tensorflow requires arrays that are used for arithmetic with each other to have the # same dtype. We don't cast if measuring samples as float tf.Tensors cannot be used to # index other tf.Tensors (is_valid is used to index valid samples). is_valid = qml.math.cast_like(is_valid, samples) if isinstance(measurement, ExpectationMP): return qml.math.sum(samples * is_valid) / qml.math.sum(is_valid) if isinstance(measurement, ProbabilityMP): return qml.math.sum(samples * qml.math.reshape(is_valid, (-1, 1)), axis=0) / qml.math.sum( is_valid ) # VarianceMP expval = qml.math.sum(samples * is_valid) / qml.math.sum(is_valid) if interface == "tensorflow": # Casting needed for tensorflow samples = qml.math.cast_like(samples, expval) is_valid = qml.math.cast_like(is_valid, expval) return qml.math.sum((samples - expval) ** 2 * is_valid) / qml.math.sum(is_valid) def gather_mcm(measurement, samples, is_valid, postselect_mode=None): """Combines, gathers and normalizes several measurements with non-trivial measurement values. Args: measurement (MeasurementProcess): measurement samples (List[dict]): Mid-circuit measurement samples is_valid (TensorLike): Boolean array with the same shape as ``samples`` where the value at each index specifies whether or not the respective sample is valid. Returns: TensorLike: The combined measurement outcome """ interface = qml.math.get_deep_interface(is_valid) mv = measurement.mv # The following block handles measurement value lists, like ``qml.counts(op=[mcm0, mcm1, mcm2])``. if isinstance(measurement, (CountsMP, ProbabilityMP, SampleMP)) and isinstance(mv, Sequence): mcm_samples = [m.concretize(samples) for m in mv] mcm_samples = qml.math.concatenate(mcm_samples, axis=1) if isinstance(measurement, ProbabilityMP): values = [list(m.branches.values()) for m in mv] values = list(itertools.product(*values)) values = [qml.math.array([v], like=interface, dtype=mcm_samples.dtype) for v in values] # Need to use boolean functions explicitly as Tensorflow does not allow integer math # on boolean arrays counts = [ qml.math.count_nonzero( qml.math.logical_and(qml.math.all(mcm_samples == v, axis=1), is_valid) ) for v in values ] counts = qml.math.array(counts, like=interface) return counts / qml.math.sum(counts) if isinstance(measurement, CountsMP): mcm_samples = [{"".join(str(int(v)) for v in tuple(s)): 1} for s in mcm_samples] return gather_non_mcm(measurement, mcm_samples, is_valid, postselect_mode=postselect_mode) mcm_samples = qml.math.ravel(qml.math.array(mv.concretize(samples), like=interface)) if isinstance(measurement, ProbabilityMP): # Need to use boolean functions explicitly as Tensorflow does not allow integer math # on boolean arrays counts = [ qml.math.count_nonzero(qml.math.logical_and((mcm_samples == v), is_valid)) for v in list(mv.branches.values()) ] counts = qml.math.array(counts, like=interface) return counts / qml.math.sum(counts) if isinstance(measurement, CountsMP): mcm_samples = [{float(s): 1} for s in mcm_samples] return gather_non_mcm(measurement, mcm_samples, is_valid, postselect_mode=postselect_mode)