Source code for pennylane.transforms.optimization.remove_barrier

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transform for removing the Barrier gate from quantum circuits."""
# pylint: disable=too-many-branches

from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.transforms import transform
from pennylane.typing import PostprocessingFn


[docs]@transform def remove_barrier(tape: QuantumScript) -> tuple[QuantumScriptBatch, PostprocessingFn]: """Quantum transform to remove Barrier gates. Args: tape (QNode or QuantumTape or Callable): A quantum circuit. Returns: qnode (QNode) or quantum function (Callable) or tuple[List[.QuantumTape], function]: The transformed circuit as described in :func:`qml.transform <pennylane.transform>`. **Example** The transform can be applied on :class:`QNode` directly. .. code-block:: python @remove_barrier @qml.qnode(device=dev) def circuit(x, y): qml.Hadamard(wires=0) qml.Hadamard(wires=1) qml.Barrier(wires=[0,1]) qml.X(0) return qml.expval(qml.Z(0)) The barrier is then removed before execution. .. details:: :title: Usage Details Consider the following quantum function: .. code-block:: python def qfunc(x, y): qml.Hadamard(wires=0) qml.Hadamard(wires=1) qml.Barrier(wires=[0,1]) qml.X(0) return qml.expval(qml.Z(0)) The circuit before optimization: >>> dev = qml.device('default.qubit', wires=2) >>> qnode = qml.QNode(qfunc, dev) >>> print(qml.draw(qnode)(1, 2)) 0: ──H──╭||──X──┤ ⟨Z⟩ 1: ──H──╰||─────┤ We can remove the Barrier by running the ``remove_barrier`` transform: >>> optimized_qfunc = remove_barrier(qfunc) >>> optimized_qnode = qml.QNode(optimized_qfunc, dev) >>> print(qml.draw(optimized_qnode)(1, 2)) 0: ──H──X──┤ ⟨Z⟩ 1: ──H─────┤ """ operations = filter(lambda op: op.name != "Barrier", tape.operations) new_tape = type(tape)(operations, tape.measurements, shots=tape.shots) def null_postprocessing(results): """A postprocesing function returned by a transform that only converts the batch of results into a result for a single ``QuantumTape``. """ return results[0] # pragma: no cover return [new_tape], null_postprocessing