Source code for pennylane.transforms.optimization.undo_swaps
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transform that eliminates the swap operators by reordering the wires."""
# pylint: disable=too-many-branches
from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.transforms import transform
from pennylane.typing import PostprocessingFn
def null_postprocessing(results):
"""A postprocesing function returned by a transform that only converts the batch of results
into a result for a single ``QuantumTape``.
"""
return results[0]
[docs]@transform
def undo_swaps(tape: QuantumScript) -> tuple[QuantumScriptBatch, PostprocessingFn]:
"""Quantum function transform to remove SWAP gates by running from right
to left through the circuit changing the position of the qubits accordingly.
Args:
tape (QNode or QuantumTape or Callable): A quantum circuit.
Returns:
qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]: The transformed circuit as described in :func:`qml.transform <pennylane.transform>`.
**Example**
>>> dev = qml.device('default.qubit', wires=3)
You can apply the transform directly on a :class:`QNode`
.. code-block:: python
@undo_swaps
@qml.qnode(device=dev)
def circuit():
qml.Hadamard(wires=0)
qml.X(1)
qml.SWAP(wires=[0,1])
qml.SWAP(wires=[0,2])
qml.Y(0)
return qml.expval(qml.Z(0))
The SWAP gates are removed before execution.
.. details::
:title: Usage Details
Consider the following quantum function:
.. code-block:: python
def qfunc():
qml.Hadamard(wires=0)
qml.X(1)
qml.SWAP(wires=[0,1])
qml.SWAP(wires=[0,2])
qml.Y(0)
return qml.expval(qml.Z(0))
The circuit before optimization:
>>> dev = qml.device('default.qubit', wires=3)
>>> qnode = qml.QNode(qfunc, dev)
>>> print(qml.draw(qnode)())
0: ──H──╭SWAP──╭SWAP──Y──┤ ⟨Z⟩
1: ──X──╰SWAP──│─────────┤
2: ────────────╰SWAP─────┤
We can remove the SWAP gates by running the ``undo_swap`` transform:
>>> optimized_qfunc = undo_swaps(qfunc)
>>> optimized_qnode = qml.QNode(optimized_qfunc, dev)
>>> print(qml.draw(optimized_qnode)())
0: ──Y──┤ ⟨Z⟩
1: ──H──┤
2: ──X──┤
"""
wire_map = {wire: wire for wire in tape.wires}
gates = []
for current_gate in reversed(tape.operations):
if current_gate.name == "SWAP":
swap_wires_0, swap_wires_1 = current_gate.wires
wire_map[swap_wires_0], wire_map[swap_wires_1] = (
wire_map[swap_wires_1],
wire_map[swap_wires_0],
)
else:
gates.append(current_gate.map_wires(wire_map))
gates.reverse()
new_tape = tape.copy(operations=gates)
new_tape.trainable_params = tape.trainable_params
return [new_tape], null_postprocessing
_modules/pennylane/transforms/optimization/undo_swaps
Download Python script
Download Notebook
View on GitHub