qml.ControlledQubitUnitary

class ControlledQubitUnitary(U, control_wires, wires, control_values)[source]

Bases: pennylane.ops.op_math.controlled.ControlledOp

Apply an arbitrary fixed unitary to wires with control from the control_wires.

In addition to default Operation instance attributes, the following are available for ControlledQubitUnitary:

  • control_wires: wires that act as control for the operation

  • control_values: the state on which to apply the controlled operation (see below)

  • target_wires: the wires the unitary matrix will be applied to

  • work_wires: wires made use of during the decomposition of the operation into native operations

Details:

  • Number of wires: Any (the operation can act on any number of wires)

  • Number of parameters: 1

  • Number of dimensions per parameter: (2,)

  • Gradient recipe: None

Parameters
  • base (Union[array[complex], QubitUnitary]) – square unitary matrix or a QubitUnitary operation. If passing a matrix, this will be used to construct a QubitUnitary operator that will be used as the base operator. If providing a qml.QubitUnitary, this will be used as the base directly.

  • control_wires (Union[Wires, Sequence[int], or int]) – the control wire(s)

  • wires (Union[Wires, Sequence[int], or int]) – the wire(s) the unitary acts on (optional if U is provided as a QubitUnitary)

  • control_values (List[int, bool]) – a list providing the state of the control qubits to control on (default is the all 1s state)

  • unitary_check (bool) – whether to check whether an array U is unitary when creating the operator (default False)

  • work_wires (Union[Wires, Sequence[int], or int]) – ancillary wire(s) that may be utilized in during the decomposition of the operator into native operations.

Example

The following shows how a single-qubit unitary can be applied to wire 2 with control on both wires 0 and 1:

>>> U = np.array([[ 0.94877869,  0.31594146], [-0.31594146,  0.94877869]])
>>> qml.ControlledQubitUnitary(U, control_wires=[0, 1], wires=2)
Controlled(QubitUnitary(array([[ 0.94877869,  0.31594146],
   [-0.31594146,  0.94877869]]), wires=[2]), control_wires=[0, 1])

Alternatively, the same operator can be constructed with a QubitUnitary:

>>> base = qml.QubitUnitary(U, wires=2)
>>> qml.ControlledQubitUnitary(base, control_wires=[0, 1])
Controlled(QubitUnitary(array([[ 0.94877869,  0.31594146],
   [-0.31594146,  0.94877869]]), wires=[2]), control_wires=[0, 1])

Typically, controlled operations apply a desired gate if the control qubits are all in the state \(\vert 1\rangle\). However, there are some situations where it is necessary to apply a gate conditioned on all qubits being in the \(\vert 0\rangle\) state, or a mix of the two.

The state on which to control can be changed by passing a string of bits to control_values. For example, if we want to apply a single-qubit unitary to wire 3 conditioned on three wires where the first is in state 0, the second is in state 1, and the third in state 1, we can write:

>>> qml.ControlledQubitUnitary(U, control_wires=[0, 1, 2], wires=3, control_values=[0, 1, 1])

or

>>> qml.ControlledQubitUnitary(U, control_wires=[0, 1, 2], wires=3, control_values=[False, True, True])

arithmetic_depth

Arithmetic depth of the operator.

base

The base operator.

basis

The basis of an operation, or for controlled gates, of the target operation.

batch_size

Batch size of the operator if it is used with broadcasted parameters.

control_values

Iterable[Bool].

control_wires

The control wires.

data

The trainable parameters

grad_method

Gradient computation method.

grad_recipe

Gradient recipe for the parameter-shift method.

has_adjoint

bool(x) -> bool

has_decomposition

bool(x) -> bool

has_diagonalizing_gates

bool(x) -> bool

has_generator

bool(x) -> bool

has_matrix

bool(x) -> bool

hash

Integer hash that uniquely represents the operator.

hyperparameters

Dictionary of non-trainable variables that this operation depends on.

id

Custom string to label a specific operator instance.

is_hermitian

This property determines if an operator is hermitian.

name

String for the name of the operator.

ndim_params

Number of dimensions per trainable parameter that the operator depends on.

num_params

Number of trainable parameters that the operator depends on.

num_wires

Number of wires that the operator acts on.

parameter_frequencies

Returns the frequencies for each operator parameter with respect to an expectation value of the form \(\langle \psi | U(\mathbf{p})^\dagger \hat{O} U(\mathbf{p})|\psi\rangle\).

parameters

Trainable parameters that the operator depends on.

pauli_rep

A PauliSentence representation of the Operator, or None if it doesn’t have one.

target_wires

The wires of the target operator.

wires

Wires that the operator acts on.

work_wires

Additional wires that can be used in the decomposition.

arithmetic_depth
base

The base operator.

basis
batch_size
control_values

Iterable[Bool]. For each control wire, denotes whether to control on True or False.

control_wires

The control wires.

data

The trainable parameters

grad_method = None

Gradient computation method.

grad_recipe = None

Gradient recipe for the parameter-shift method.

This is a tuple with one nested list per operation parameter. For parameter \(\phi_k\), the nested list contains elements of the form \([c_i, a_i, s_i]\) where \(i\) is the index of the term, resulting in a gradient recipe of

\[\frac{\partial}{\partial\phi_k}f = \sum_{i} c_i f(a_i \phi_k + s_i).\]

If None, the default gradient recipe containing the two terms \([c_0, a_0, s_0]=[1/2, 1, \pi/2]\) and \([c_1, a_1, s_1]=[-1/2, 1, -\pi/2]\) is assumed for every parameter.

Type

tuple(Union(list[list[float]], None)) or None

has_adjoint
has_decomposition
has_diagonalizing_gates
has_generator
has_matrix
hash
hyperparameters

Dictionary of non-trainable variables that this operation depends on.

Type

dict

id

Custom string to label a specific operator instance.

is_hermitian
name
ndim_params = (2,)

Number of dimensions per trainable parameter that the operator depends on.

Type

tuple[int]

num_params = 1

Number of trainable parameters that the operator depends on.

Type

int

num_wires: Union[int, pennylane.operation.WiresEnum] = -1

Number of wires that the operator acts on.

Type

int

parameter_frequencies
parameters

Trainable parameters that the operator depends on.

pauli_rep

A PauliSentence representation of the Operator, or None if it doesn’t have one.

target_wires

The wires of the target operator.

wires
work_wires

Additional wires that can be used in the decomposition. Not modified by the operation.

adjoint()

Create an operation that is the adjoint of this one.

compute_decomposition(*params[, wires])

Representation of the operator as a product of other operators (static method).

compute_diagonalizing_gates(*params, wires, …)

Sequence of gates that diagonalize the operator in the computational basis (static method).

compute_eigvals(*params, **hyperparams)

Eigenvalues of the operator in the computational basis (static method).

compute_matrix(*params, **hyperparams)

Representation of the operator as a canonical matrix in the computational basis (static method).

compute_sparse_matrix(*params, **hyperparams)

Representation of the operator as a sparse matrix in the computational basis (static method).

decomposition()

Representation of the operator as a product of other operators.

diagonalizing_gates()

Sequence of gates that diagonalize the operator in the computational basis.

eigvals()

Eigenvalues of the operator in the computational basis.

expand()

Returns a tape that contains the decomposition of the operator.

generator()

Generator of an operator that is in single-parameter-form.

label([decimals, base_label, cache])

A customizable string representation of the operator.

map_wires(wire_map)

Returns a copy of the current operator with its wires changed according to the given wire map.

matrix([wire_order])

Representation of the operator as a matrix in the computational basis.

pow(z)

A list of new operators equal to this one raised to the given power.

queue([context])

Append the operator to the Operator queue.

simplify()

Reduce the depth of nested operators to the minimum.

single_qubit_rot_angles()

The parameters required to implement a single-qubit gate as an equivalent Rot gate, up to a global phase.

sparse_matrix([wire_order, format])

Representation of the operator as a sparse matrix in the computational basis.

terms()

Representation of the operator as a linear combination of other operators.

adjoint()

Create an operation that is the adjoint of this one.

Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops are equivalent to the inverted operation for unitary gates.

Returns

The adjointed operation.

static compute_decomposition(*params, wires=None, **hyperparameters)

Representation of the operator as a product of other operators (static method).

\[O = O_1 O_2 \dots O_n.\]

Note

Operations making up the decomposition should be queued within the compute_decomposition method.

See also

decomposition().

Parameters
  • *params (list) – trainable parameters of the operator, as stored in the parameters attribute

  • wires (Iterable[Any], Wires) – wires that the operator acts on

  • **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the hyperparameters attribute

Returns

decomposition of the operator

Return type

list[Operator]

static compute_diagonalizing_gates(*params, wires, **hyperparams)

Sequence of gates that diagonalize the operator in the computational basis (static method).

Given the eigendecomposition \(O = U \Sigma U^{\dagger}\) where \(\Sigma\) is a diagonal matrix containing the eigenvalues, the sequence of diagonalizing gates implements the unitary \(U^{\dagger}\).

The diagonalizing gates rotate the state into the eigenbasis of the operator.

Parameters
  • params (list) – trainable parameters of the operator, as stored in the parameters attribute

  • wires (Iterable[Any], Wires) – wires that the operator acts on

  • hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the hyperparameters attribute

Returns

list of diagonalizing gates

Return type

list[Operator]

static compute_eigvals(*params, **hyperparams)

Eigenvalues of the operator in the computational basis (static method).

If diagonalizing_gates are specified and implement a unitary \(U^{\dagger}\), the operator can be reconstructed as

\[O = U \Sigma U^{\dagger},\]

where \(\Sigma\) is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

Parameters
  • *params (list) – trainable parameters of the operator, as stored in the parameters attribute

  • **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the hyperparameters attribute

Returns

eigenvalues

Return type

tensor_like

static compute_matrix(*params, **hyperparams)

Representation of the operator as a canonical matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this assumes that the wires of the operator correspond to the global wire order.

Parameters
  • *params (list) – trainable parameters of the operator, as stored in the parameters attribute

  • **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the hyperparameters attribute

Returns

matrix representation

Return type

tensor_like

static compute_sparse_matrix(*params, **hyperparams)

Representation of the operator as a sparse matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this assumes that the wires of the operator correspond to the global wire order.

See also

sparse_matrix()

Parameters
  • *params (list) – trainable parameters of the operator, as stored in the parameters attribute

  • **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the hyperparameters attribute

Returns

sparse matrix representation

Return type

scipy.sparse._csr.csr_matrix

decomposition()

Representation of the operator as a product of other operators.

\[O = O_1 O_2 \dots O_n\]

A DecompositionUndefinedError is raised if no representation by decomposition is defined.

Returns

decomposition of the operator

Return type

list[Operator]

diagonalizing_gates()

Sequence of gates that diagonalize the operator in the computational basis.

Given the eigendecomposition \(O = U \Sigma U^{\dagger}\) where \(\Sigma\) is a diagonal matrix containing the eigenvalues, the sequence of diagonalizing gates implements the unitary \(U^{\dagger}\).

The diagonalizing gates rotate the state into the eigenbasis of the operator.

A DiagGatesUndefinedError is raised if no representation by decomposition is defined.

Returns

a list of operators

Return type

list[Operator] or None

eigvals()

Eigenvalues of the operator in the computational basis.

If diagonalizing_gates are specified and implement a unitary \(U^{\dagger}\), the operator can be reconstructed as

\[O = U \Sigma U^{\dagger},\]

where \(\Sigma\) is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

Note

When eigenvalues are not explicitly defined, they are computed automatically from the matrix representation. Currently, this computation is not differentiable.

A EigvalsUndefinedError is raised if the eigenvalues have not been defined and cannot be inferred from the matrix representation.

Returns

eigenvalues

Return type

tensor_like

expand()

Returns a tape that contains the decomposition of the operator.

Warning

This function is deprecated and will be removed in version 0.39. The same behaviour can be achieved simply through ‘qml.tape.QuantumScript(self.decomposition())’.

Returns

quantum tape

Return type

QuantumTape

generator()

Generator of an operator that is in single-parameter-form.

For example, for operator

\[U(\phi) = e^{i\phi (0.5 Y + Z\otimes X)}\]

we get the generator

>>> U.generator()
  0.5 * Y(0) + Z(0) @ X(1)

The generator may also be provided in the form of a dense or sparse Hamiltonian (using Hermitian and SparseHamiltonian respectively).

The default value to return is None, indicating that the operation has no defined generator.

label(decimals=None, base_label=None, cache=None)

A customizable string representation of the operator.

Parameters
  • decimals=None (int) – If None, no parameters are included. Else, specifies how to round the parameters.

  • base_label=None (str) – overwrite the non-parameter component of the label

  • cache=None (dict) – dictionary that carries information between label calls in the same drawing

Returns

label to use in drawings

Return type

str

Example:

>>> op = qml.RX(1.23456, wires=0)
>>> op.label()
"RX"
>>> op.label(base_label="my_label")
"my_label"
>>> op = qml.RX(1.23456, wires=0, id="test_data")
>>> op.label()
"RX("test_data")"
>>> op.label(decimals=2)
"RX\n(1.23,"test_data")"
>>> op.label(base_label="my_label")
"my_label("test_data")"
>>> op.label(decimals=2, base_label="my_label")
"my_label\n(1.23,"test_data")"

If the operation has a matrix-valued parameter and a cache dictionary is provided, unique matrices will be cached in the 'matrices' key list. The label will contain the index of the matrix in the 'matrices' list.

>>> op2 = qml.QubitUnitary(np.eye(2), wires=0)
>>> cache = {'matrices': []}
>>> op2.label(cache=cache)
'U(M0)'
>>> cache['matrices']
[tensor([[1., 0.],
 [0., 1.]], requires_grad=True)]
>>> op3 = qml.QubitUnitary(np.eye(4), wires=(0,1))
>>> op3.label(cache=cache)
'U(M1)'
>>> cache['matrices']
[tensor([[1., 0.],
        [0., 1.]], requires_grad=True),
tensor([[1., 0., 0., 0.],
        [0., 1., 0., 0.],
        [0., 0., 1., 0.],
        [0., 0., 0., 1.]], requires_grad=True)]
map_wires(wire_map)

Returns a copy of the current operator with its wires changed according to the given wire map.

Parameters

wire_map (dict) – dictionary containing the old wires as keys and the new wires as values

Returns

new operator

Return type

Operator

matrix(wire_order=None)

Representation of the operator as a matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in the global wire order. Otherwise, the wire order defaults to the operator’s wires.

If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation framework as the parameters.

A MatrixUndefinedError is raised if the matrix representation has not been defined.

See also

compute_matrix()

Parameters

wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s wires

Returns

matrix representation

Return type

tensor_like

pow(z)

A list of new operators equal to this one raised to the given power.

Parameters

z (float) – exponent for the operator

Returns

list[Operator]

queue(context=<class 'pennylane.queuing.QueuingManager'>)

Append the operator to the Operator queue.

simplify()

Reduce the depth of nested operators to the minimum.

Returns

simplified operator

Return type

Operator

single_qubit_rot_angles()

The parameters required to implement a single-qubit gate as an equivalent Rot gate, up to a global phase.

Returns

A list of values \([\phi, \theta, \omega]\) such that \(RZ(\omega) RY(\theta) RZ(\phi)\) is equivalent to the original operation.

Return type

tuple[float, float, float]

sparse_matrix(wire_order=None, format='csr')

Representation of the operator as a sparse matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in the global wire order. Otherwise, the wire order defaults to the operator’s wires.

A SparseMatrixUndefinedError is raised if the sparse matrix representation has not been defined.

Parameters

wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s wires

Returns

sparse matrix representation

Return type

scipy.sparse._csr.csr_matrix

terms()

Representation of the operator as a linear combination of other operators.

\[O = \sum_i c_i O_i\]

A TermsUndefinedError is raised if no representation by terms is defined.

Returns

list of coefficients \(c_i\) and list of operations \(O_i\)

Return type

tuple[list[tensor_like or float], list[Operation]]