qml.matrix¶
- matrix(op, wire_order=None)[source]¶
The matrix representation of an operation or quantum circuit.
- Parameters
op (Operator or QNode or QuantumTape or Callable or PauliWord or PauliSentence) – A quantum operator or quantum circuit.
wire_order (Sequence[Any], optional) –
Order of the wires in the quantum circuit. The default wire order depends on the type of
op
:If
op
is aQNode
, then the wire order is determined by the associated device’s wires, if provided.Otherwise, the wire order is determined by the order in which wires appear in the circuit.
See the usage details for more information.
- Returns
If an operator,
PauliWord
orPauliSentence
is provided as input, the matrix is returned directly in the form of a tensor. Otherwise, the transformed circuit is returned as described inqml.transform
. Executing this circuit will provide its matrix representation.- Return type
TensorLike or qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]
Example
Given an instantiated operator,
qml.matrix
returns the matrix representation:>>> op = qml.RX(0.54, wires=0) >>> qml.matrix(op) [[0.9637709+0.j 0. -0.26673144j] [0. -0.26673144j 0.9637709+0.j ]]
It can also be used in a functional form:
>>> x = torch.tensor(0.6, requires_grad=True) >>> matrix_fn = qml.matrix(qml.RX) >>> matrix_fn(x, wires=0) tensor([[0.9553+0.0000j, 0.0000-0.2955j], [0.0000-0.2955j, 0.9553+0.0000j]], grad_fn=<AddBackward0>)
In its functional form, it is fully differentiable with respect to gate arguments:
>>> loss = torch.real(torch.trace(matrix_fn(x, wires=0))) >>> loss.backward() >>> x.grad tensor(-0.5910)
This operator transform can also be applied to QNodes, tapes, and quantum functions that contain multiple operations; see Usage Details below for more details.
Usage Details
qml.matrix
can also be used withPauliWord
andPauliSentence
instances. Internally, we are using theirto_mat()
methods.>>> X0 = PauliWord({0:"X"}) >>> np.allclose(qml.matrix(X0), X0.to_mat()) True
qml.matrix
can also be used with QNodes, tapes, or quantum functions that contain multiple operations.Consider the following quantum function:
def circuit(theta): qml.RX(theta, wires=1) qml.Z(0)
We can use
qml.matrix
to generate a new function that returns the unitary matrix corresponding to the functioncircuit
:>>> matrix_fn = qml.matrix(circuit) >>> theta = np.pi / 4 >>> matrix_fn(theta) array([[ 0.92387953+0.j, 0.+0.j , 0.-0.38268343j, 0.+0.j], [ 0.+0.j, -0.92387953+0.j, 0.+0.j, 0. +0.38268343j], [ 0. -0.38268343j, 0.+0.j, 0.92387953+0.j, 0.+0.j], [ 0.+0.j, 0.+0.38268343j, 0.+0.j, -0.92387953+0.j]])
Note that since
wire_order
was not specified, the default order[1, 0]
forcircuit
was used, and the unitary matrix corresponds to the operation \(R_X(\theta)\otimes Z\). To obtain the matrix for \(Z\otimes R_X(\theta)\), specifywire_order=[0, 1]
in the function call:>>> matrix = qml.matrix(circuit, wire_order=[0, 1])
You can also get the unitary matrix for operations on a subspace of a larger Hilbert space. For example, with the same function
circuit
andwire_order=["a", 0, "b", 1]
you obtain the \(16\times 16\) matrix for the operation \(I\otimes Z\otimes I\otimes R_X(\theta)\).This unitary matrix can also be used in differentiable calculations. For example, consider the following cost function:
def circuit(theta): qml.RX(theta, wires=1) qml.Z(0) qml.CNOT(wires=[0, 1]) def cost(theta): matrix = qml.matrix(circuit)(theta) return np.real(np.trace(matrix))
Since this cost function returns a real scalar as a function of
theta
, we can differentiate it:>>> theta = np.array(0.3, requires_grad=True) >>> cost(theta) 1.9775421558720845 >>> qml.grad(cost)(theta) -0.14943813247359922
Note
When using
qml.matrix
with aQNode
, unless specified, the device wire order will be used. If the device wires are not set, the wire order will be inferred from the quantum function used to create theQNode
. Consider the following example:def circuit(): qml.Hadamard(wires=1) qml.CZ(wires=[0, 1]) qml.Hadamard(wires=1) return qml.state() dev_with_wires = qml.device("default.qubit", wires=[0, 1]) dev_without_wires = qml.device("default.qubit") qnode_with_wires = qml.QNode(circuit, dev_with_wires) qnode_without_wires = qml.QNode(circuit, dev_without_wires)
>>> qml.matrix(qnode_with_wires)().round(2) array([[ 1.+0.j, -0.+0.j, 0.+0.j, 0.+0.j], [-0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, -0.+0.j, 1.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, -0.+0.j]]) >>> qml.matrix(qnode_without_wires)().round(2) array([[ 1.+0.j, 0.+0.j, -0.+0.j, 0.+0.j], [ 0.+0.j, -0.+0.j, 0.+0.j, 1.+0.j], [-0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, -0.+0.j]])
The second matrix above uses wire order
[1, 0]
because the device does not have wires specified, and this is the order in which wires appear incircuit()
.