Source code for pennylane.ops.functions.matrix
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains the qml.matrix function.
"""
from functools import partial
# pylint: disable=protected-access,too-many-branches
from typing import Union
import pennylane as qml
from pennylane import transform
from pennylane.operation import Operator
from pennylane.pauli import PauliSentence, PauliWord
from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.transforms import TransformError
from pennylane.typing import PostprocessingFn, TensorLike
def catalyst_qjit(qnode):
"""A method checking whether a qnode is compiled by catalyst.qjit"""
return qnode.__class__.__name__ == "QJIT" and hasattr(qnode, "user_function")
[docs]def matrix(op: Union[Operator, PauliWord, PauliSentence], wire_order=None) -> TensorLike:
r"""The matrix representation of an operation or quantum circuit.
Args:
op (Operator or QNode or QuantumTape or Callable or PauliWord or PauliSentence): A quantum operator or quantum circuit.
wire_order (Sequence[Any], optional): Order of the wires in the quantum circuit.
The default wire order depends on the type of ``op``:
- If ``op`` is a :class:`~.QNode`, then the wire order is determined by the
associated device's wires, if provided.
- Otherwise, the wire order is determined by the order in which wires
appear in the circuit.
- See the usage details for more information.
Returns:
TensorLike or qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]:
If an operator, :class:`~PauliWord` or :class:`~PauliSentence` is provided as input, the matrix is returned directly in the form of a tensor.
Otherwise, the transformed circuit is returned as described in :func:`qml.transform <pennylane.transform>`.
Executing this circuit will provide its matrix representation.
**Example**
Given an instantiated operator, ``qml.matrix`` returns the matrix representation:
>>> op = qml.RX(0.54, wires=0)
>>> qml.matrix(op)
[[0.9637709+0.j 0. -0.26673144j]
[0. -0.26673144j 0.9637709+0.j ]]
It can also be used in a functional form:
>>> x = torch.tensor(0.6, requires_grad=True)
>>> matrix_fn = qml.matrix(qml.RX)
>>> matrix_fn(x, wires=0)
tensor([[0.9553+0.0000j, 0.0000-0.2955j],
[0.0000-0.2955j, 0.9553+0.0000j]], grad_fn=<AddBackward0>)
In its functional form, it is fully differentiable with respect to gate arguments:
>>> loss = torch.real(torch.trace(matrix_fn(x, wires=0)))
>>> loss.backward()
>>> x.grad
tensor(-0.5910)
This operator transform can also be applied to QNodes, tapes, and quantum functions
that contain multiple operations; see Usage Details below for more details.
.. details::
:title: Usage Details
``qml.matrix`` can also be used with :class:`~PauliWord` and :class:`~PauliSentence` instances.
Internally, we are using their ``to_mat()`` methods.
>>> X0 = PauliWord({0:"X"})
>>> np.allclose(qml.matrix(X0), X0.to_mat())
True
``qml.matrix`` can also be used with QNodes, tapes, or quantum functions that
contain multiple operations.
Consider the following quantum function:
.. code-block:: python3
def circuit(theta):
qml.RX(theta, wires=1)
qml.Z(0)
We can use ``qml.matrix`` to generate a new function that returns the unitary matrix
corresponding to the function ``circuit``:
>>> matrix_fn = qml.matrix(circuit)
>>> theta = np.pi / 4
>>> matrix_fn(theta)
array([[ 0.92387953+0.j, 0.+0.j , 0.-0.38268343j, 0.+0.j],
[ 0.+0.j, -0.92387953+0.j, 0.+0.j, 0. +0.38268343j],
[ 0. -0.38268343j, 0.+0.j, 0.92387953+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.38268343j, 0.+0.j, -0.92387953+0.j]])
Note that since ``wire_order`` was not specified, the default order ``[1, 0]`` for ``circuit``
was used, and the unitary matrix corresponds to the operation :math:`R_X(\theta)\otimes Z`. To
obtain the matrix for :math:`Z\otimes R_X(\theta)`, specify ``wire_order=[0, 1]`` in the
function call:
>>> matrix = qml.matrix(circuit, wire_order=[0, 1])
You can also get the unitary matrix for operations on a subspace of a larger Hilbert space. For
example, with the same function ``circuit`` and ``wire_order=["a", 0, "b", 1]`` you obtain the
:math:`16\times 16` matrix for the operation :math:`I\otimes Z\otimes I\otimes R_X(\theta)`.
This unitary matrix can also be used in differentiable calculations. For example, consider the
following cost function:
.. code-block:: python
def circuit(theta):
qml.RX(theta, wires=1) qml.Z(0)
qml.CNOT(wires=[0, 1])
def cost(theta):
matrix = qml.matrix(circuit)(theta)
return np.real(np.trace(matrix))
Since this cost function returns a real scalar as a function of ``theta``, we can differentiate
it:
>>> theta = np.array(0.3, requires_grad=True)
>>> cost(theta)
1.9775421558720845
>>> qml.grad(cost)(theta)
-0.14943813247359922
.. note::
When using ``qml.matrix`` with a ``QNode``, unless specified, the device wire order will
be used. If the device wires are not set, the wire order will be inferred
from the quantum function used to create the ``QNode``. Consider the following example:
.. code-block:: python
def circuit():
qml.Hadamard(wires=1)
qml.CZ(wires=[0, 1])
qml.Hadamard(wires=1)
return qml.state()
dev_with_wires = qml.device("default.qubit", wires=[0, 1])
dev_without_wires = qml.device("default.qubit")
qnode_with_wires = qml.QNode(circuit, dev_with_wires)
qnode_without_wires = qml.QNode(circuit, dev_without_wires)
>>> qml.matrix(qnode_with_wires)().round(2)
array([[ 1.+0.j, -0.+0.j, 0.+0.j, 0.+0.j],
[-0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, -0.+0.j, 1.+0.j],
[ 0.+0.j, 0.+0.j, 1.+0.j, -0.+0.j]])
>>> qml.matrix(qnode_without_wires)().round(2)
array([[ 1.+0.j, 0.+0.j, -0.+0.j, 0.+0.j],
[ 0.+0.j, -0.+0.j, 0.+0.j, 1.+0.j],
[-0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[ 0.+0.j, 1.+0.j, 0.+0.j, -0.+0.j]])
The second matrix above uses wire order ``[1, 0]`` because the device does not have
wires specified, and this is the order in which wires appear in ``circuit()``.
"""
if catalyst_qjit(op):
op = op.user_function
if not isinstance(op, Operator):
if isinstance(op, (PauliWord, PauliSentence)):
if wire_order is None and len(op.wires) > 1:
raise ValueError(
"wire_order is required by qml.matrix() for PauliWords "
"or PauliSentences with more than one wire."
)
return op.to_mat(wire_order=wire_order)
if isinstance(op, QuantumScript):
if wire_order is None:
error_base_str = "wire_order is required by qml.matrix() for tapes"
if len(op.wires) > 1:
raise ValueError(error_base_str + " with more than one wire.")
if len(op.wires) == 0:
raise ValueError(error_base_str + " without wires.")
elif isinstance(op, qml.QNode):
if wire_order is None and op.device.wires is None:
raise ValueError(
"wire_order is required by qml.matrix() for QNodes if the device does "
"not have wires specified."
)
elif callable(op):
if getattr(op, "num_wires", 0) != 1 and wire_order is None:
raise ValueError("wire_order is required by qml.matrix() for quantum functions.")
else:
raise TransformError("Input is not an Operator, tape, QNode, or quantum function")
return _matrix_transform(op, wire_order=wire_order)
try:
return op.matrix(wire_order=wire_order)
except: # pylint: disable=bare-except
return matrix(QuantumScript(op.decomposition()), wire_order=wire_order or op.wires)
@partial(transform, is_informative=True)
def _matrix_transform(
tape: QuantumScript, wire_order=None, **kwargs
) -> tuple[QuantumScriptBatch, PostprocessingFn]:
if wire_order and not set(tape.wires).issubset(wire_order):
raise TransformError(
f"Wires in circuit {list(tape.wires)} are inconsistent with "
f"those in wire_order {list(wire_order)}"
)
wires = kwargs.get("device_wires", None) or tape.wires
wire_order = wire_order or wires
def processing_fn(res):
"""Defines how matrix works if applied to a tape containing multiple operations."""
params = res[0].get_parameters(trainable_only=False)
interface = qml.math.get_interface(*params)
# initialize the unitary matrix
if len(res[0].operations) == 0:
result = qml.math.eye(2 ** len(wire_order), like=interface)
else:
result = matrix(res[0].operations[0], wire_order=wire_order)
for op in res[0].operations[1:]:
U = matrix(op, wire_order=wire_order)
# Coerce the matrices U and result and use matrix multiplication. Broadcasted axes
# are handled correctly automatically by ``matmul`` (See e.g. NumPy documentation)
result = qml.math.matmul(*qml.math.coerce([U, result], like=interface), like=interface)
return result
return [tape], processing_fn
@_matrix_transform.custom_qnode_transform
def _matrix_transform_qnode(self, qnode, targs, tkwargs):
tkwargs.setdefault("device_wires", qnode.device.wires)
return self.default_qnode_transform(qnode, targs, tkwargs)
_modules/pennylane/ops/functions/matrix
Download Python script
Download Notebook
View on GitHub