qml.parity_transform¶
-
parity_transform
(fermi_operator, n, ps=False, wire_map=None, tol=None)[source]¶ Convert a fermionic operator to a qubit operator using the parity mapping.
Note
Hamiltonians created with this mapping should be used with operators and states that are compatible with the parity basis.
In parity mapping, qubit \(j\) stores the parity of all \(j-1\) qubits before it. In comparison,
jordan_wigner()
simply uses qubit \(j\) to store the occupation number. In parity mapping, the fermionic creation and annihilation operators are mapped to the Pauli operators as\[\begin{split}\begin{align*} a^{\dagger}_0 &= \left (\frac{X_0 - iY_0}{2} \right )\otimes X_1 \otimes X_2 \otimes ... X_n, \\\\ a^{\dagger}_n &= \left (\frac{Z_{n-1} \otimes X_n - iY_n}{2} \right ) \otimes X_{n+1} \otimes X_{n+2} \otimes ... \otimes X_n \end{align*}\end{split}\]and
\[\begin{split}\begin{align*} a_0 &= \left (\frac{X_0 + iY_0}{2} \right )\otimes X_1 \otimes X_2 \otimes ... X_n,\\\\ a_n &= \left (\frac{Z_{n-1} \otimes X_n + iY_n}{2} \right ) \otimes X_{n+1} \otimes X_{n+2} \otimes ... \otimes X_n \end{align*}\end{split}\]where \(X\), \(Y\), and \(Z\) are the Pauli operators and \(n\) is the number of qubits, i.e., spin orbitals.
- Parameters
fermi_operator (FermiWord, FermiSentence) – the fermionic operator
n (int) – number of qubits, i.e., spin orbitals in the system
ps (bool) – whether to return the result as a
PauliSentence
instead of anOperator
. Defaults toFalse
.wire_map (dict) – a dictionary defining how to map the orbitals of the Fermi operator to qubit wires. If
None
, the integers used to order the orbitals will be used as wire labels. Defaults toNone
.tol (float) – tolerance for discarding the imaginary part of the coefficients
- Returns
a linear combination of qubit operators
- Return type
Union[PauliSentence, Operator]
Example
>>> w = qml.fermi.from_string('0+ 1-') >>> parity_transform(w, n=6) ( -0.25j * Y(0) + (-0.25+0j) * (X(0) @ Z(1)) + (0.25+0j) * X(0) + 0.25j * (Y(0) @ Z(1)) )
>>> parity_transform(w, n=6, ps=True) -0.25j * Y(0) + (-0.25+0j) * X(0) @ Z(1) + (0.25+0j) * X(0) + 0.25j * Y(0) @ Z(1)
>>> parity_transform(w, n=6, ps=True, wire_map={0: 2, 1: 3}) -0.25j * Y(2) + (-0.25+0j) * X(2) @ Z(3) + (0.25+0j) * X(2) + 0.25j * Y(2) @ Z(3)