qml.transform_angles¶
- transform_angles(angles, routine1, routine2)[source]¶
Converts angles for quantum signal processing (QSP) and quantum singular value transformation (QSVT) routines.
The transformation is based on Appendix A.2 of arXiv:2105.02859. Note that QSVT is equivalent to taking the reflection convention of QSP.
- Parameters
angles (tensor-like) – angles to be transformed
routine1 (str) – the current routine for which the angles are obtained, must be either
"QSP"
or"QSVT"
routine2 (str) – the target routine for which the angles should be transformed, must be either
"QSP"
or"QSVT"
- Returns
the transformed angles as an array
- Return type
tensor-like
Example
>>> qsp_angles = np.array([0.2, 0.3, 0.5]) >>> qsvt_angles = qml.transform_angles(qsp_angles, "QSP", "QSVT") >>> print(qsvt_angles) [-6.86858347 1.87079633 -0.28539816]
Usage Details
This example applies the polynomial \(P(x) = x - \frac{x^3}{2} + \frac{x^5}{3}\) to a block-encoding of \(x = 0.2\).
poly = [0, 1.0, 0, -1/2, 0, 1/3] qsp_angles = qml.poly_to_angles(poly, "QSP") qsvt_angles = qml.transform_angles(qsp_angles, "QSP", "QSVT") x = 0.2 # Encodes x in the top left of the matrix block_encoding = qml.RX(2 * np.arccos(x), wires=0) projectors = [qml.PCPhase(angle, dim=1, wires=0) for angle in qsvt_angles] @qml.qnode(qml.device("default.qubit")) def circuit_qsvt(): qml.QSVT(block_encoding, projectors) return qml.state() output = qml.matrix(circuit_qsvt, wire_order=[0])()[0, 0] expected = sum(coef * (x**i) for i, coef in enumerate(poly)) print("output qsvt: ", output.real) print("P(x) = ", expected)
output qsvt: 0.19610666666647059 P(x) = 0.19610666666666668
code/api/pennylane.transform_angles
Download Python script
Download Notebook
View on GitHub