qml.capture.make_plxpr¶
- make_plxpr(func, static_argnums=(), autograph=True, **kwargs)[source]¶
Takes a function and returns a
Callable
that, when called, produces a PLxPR representing the function with the given args.This function relies on
jax.make_jaxpr
as part of creating the representation. Any keyword arguments passed tomake_plxpr
that are not directly used in the function will be passed tomake_jaxpr
.- Parameters
func (Callable) – the
Callable
to be captured- Keyword Arguments
static_argnums (Union(int, Sequence[int])) – optional, an
int
or collection ofint
s that specify which positional arguments to treat as static (trace- and compile-time constant).autograph (bool) – whether to use AutoGraph to convert Python control flow to native PennyLane control flow. Defaults to True.
- Returns
function that, when called, returns the PLxPR representation of
func
for the specified inputs.- Return type
Callable
Note
More details on using AutoGraph are provided under Usage Details.
There are some limitations and sharp bits regarding AutoGraph; to better understand supported behaviour and limitations, see https://docs.pennylane.ai/en/stable/development/autograph.html
Example
qml.capture.enable() dev = qml.device("default.qubit", wires=1) @qml.qnode(dev) def circ(x): qml.RX(x, 0) qml.Hadamard(0) return qml.expval(qml.X(0)) plxpr = qml.capture.make_plxpr(circ)(1.2)
>>> print(plxpr) { lambda ; a:f32[]. let b:f32[] = qnode[ device=<default.qubit device (wires=1) at 0x152a6f010> n_consts=0 qfunc_jaxpr={ lambda ; c:f32[]. let _:AbstractOperator() = RX[n_wires=1] c 0 _:AbstractOperator() = Hadamard[n_wires=1] 0 d:AbstractOperator() = PauliX[n_wires=1] 0 e:AbstractMeasurement(n_wires=None) = expval_obs d in (e,) } qnode=<QNode: device='<default.qubit device (wires=1) at 0x152a6f010>', interface='auto', diff_method='best'> qnode_kwargs={'diff_method': 'best', 'grad_on_execution': 'best', 'cache': False, 'cachesize': 10000, 'max_diff': 1, 'device_vjp': False, 'mcm_method': None, 'postselect_mode': None} shots=Shots(total=None) ] a in (b,) }
Usage Details
The
autograph
argument isTrue
by default, converting Pythonic control flow to PennyLane supported control flow. This requires thediastatic-malt
package, a standalone fork of the AutoGraph module in TensorFlow (official documentation ).Note
There are some limitations and sharp bits regarding AutoGraph; to better understand supported behaviour and limitations, see https://docs.pennylane.ai/en/stable/development/autograph.html
On its own, capture of standard Python control flow is not supported:
def fn(x): if x > 5: return x+1 return x+2
For this function, capture doesn’t work without autograph:
>>> plxpr_fn = qml.capture.make_plxpr(fn, autograph=False) >>> plxpr = plxpr_fn(3) TracerBoolConversionError: Attempted boolean conversion of traced array with shape bool[].
With AutoGraph, the control flow is automatically converted to the native PennyLane control flow implementation, and succeeds:
>>> plxpr_fn = qml.capture.make_plxpr(fn) >>> plxpr = plxpr_fn(3) >>> plxpr { lambda ; a:i64[]. let b:bool[] = gt a 5 _:bool[] c:i64[] = cond[ args_slice=slice(4, None, None) consts_slices=[slice(2, 3, None), slice(3, 4, None)] jaxpr_branches=[{ lambda a:i64[]; . let in (True, a) }, { lambda a:i64[]; . let b:i64[] = add a 2 in (True, b) }] ] b True a a in (c,) }
We can evaulate this to get the results:
>>> jax.core.eval_jaxpr(plxpr.jaxpr, plxpr.consts, 2) [Array(4, dtype=int64, weak_type=True)]
>>> jax.core.eval_jaxpr(plxpr.jaxpr, plxpr.consts, 7) [Array(8, dtype=int64, weak_type=True)]