qml.fermi.FermiC

class FermiC(orbital)[source]

Bases: pennylane.fermi.fermionic.FermiWord

The fermionic creation operator \(a^{\dagger}\)

For instance, the operator qml.FermiC(2) denotes \(a^{\dagger}_2\). This operator applied to \(\ket{0000}\) gives \(\ket{0010}\).

Parameters

orbital (int) – the non-negative integer indicating the orbital the operator acts on.

Note

While the FermiC class represents a mathematical operator, it is not a PennyLane qubit Operator.

See also

FermiA

Example

To construct the operator \(a^{\dagger}_0\):

>>> w = FermiC(0)
>>> print(w)
a⁺(0)

This can be combined with the annihilation operator FermiA. For example, \(a^{\dagger}_0 a_1 a^{\dagger}_2 a_3\) can be constructed as:

>>> w = qml.FermiC(0) * qml.FermiA(1) * qml.FermiC(2) * qml.FermiA(3)
>>> print(w)
a⁺(0) a(1) a⁺(2) a(3)

adjoint()

Return the adjoint of FermiC.

adjoint()[source]

Return the adjoint of FermiC.