qml.fermi.FermiC¶
- class FermiC(orbital)[source]¶
Bases:
pennylane.fermi.fermionic.FermiWord
The fermionic creation operator \(a^{\dagger}\)
For instance, the operator
qml.FermiC(2)
denotes \(a^{\dagger}_2\). This operator applied to \(\ket{0000}\) gives \(\ket{0010}\).- Parameters
orbital (int) – the non-negative integer indicating the orbital the operator acts on.
Note
While the
FermiC
class represents a mathematical operator, it is not a PennyLane qubitOperator
.See also
Example
To construct the operator \(a^{\dagger}_0\):
>>> w = FermiC(0) >>> print(w) a⁺(0)
This can be combined with the annihilation operator
FermiA
. For example, \(a^{\dagger}_0 a_1 a^{\dagger}_2 a_3\) can be constructed as:>>> w = qml.FermiC(0) * qml.FermiA(1) * qml.FermiC(2) * qml.FermiA(3) >>> print(w) a⁺(0) a(1) a⁺(2) a(3)
Methods
code/api/pennylane.fermi.FermiC
Download Python script
Download Notebook
View on GitHub