qml.fourier.visualize.bar¶
- bar(coeffs, n_inputs, ax, colour_dict=None, show_freqs=True)[source]¶
Plot a set of Fourier coefficients as a bar plot.
- Parameters
coeffs (array[complex]) – A single set of Fourier coefficients. The dimensions of the coefficient array should be
(2d + 1, ) * n_inputs
whered
is the largest frequency.n_inputs (int) – The number of input variables in the function.
ax (list[matplotlib.axes.Axes]) – Axis on which to plot. Must be a pair of axes from a subplot where
sharex="row"
andsharey="col"
.colour_dict (dict[str, str]) – A dictionary of the form
{"real" : colour_string, "imag" : other_colour_string}
indicating which colours should be used in the plot.show_freqs – Whether or not to print the frequency labels on the plot axis.
Example
Suppose we have the following quantum function:
dev = qml.device('default.qubit', wires=2) @qml.qnode(dev) def circuit_with_weights(w, x): qml.RX(x[0], wires=0) qml.RY(x[1], wires=1) qml.CNOT(wires=[1, 0]) qml.Rot(*w[0], wires=0) qml.Rot(*w[1], wires=1) qml.CNOT(wires=[1, 0]) qml.RX(x[0], wires=0) qml.RY(x[1], wires=1) qml.CNOT(wires=[1, 0]) return qml.expval(qml.Z(0))
We would like to compute and plot a single set of Fourier coefficients. We will choose some values for
w
at random:from functools import partial n_inputs = 2 degree = 2 weights = np.random.normal(0, 1, size=(2, 3)) coeffs = coefficients(partial(circuit_with_weights, weights), n_inputs, degree)
We can now plot by setting up a pair of
matplotlib
axes and passing them to the plotting function:>>> import matplotlib.pyplot as plt >>> from pennylane.fourier.visualize import bar >>> fig, ax = plt.subplots(2, 1, sharey=True, figsize=(15, 4)) >>> bar(coeffs, n_inputs, ax, colour_dict={"real" : "red", "imag" : "blue"})