# qml.resource.FirstQuantization¶

class FirstQuantization(n, eta, omega, error=0.0016, charge=0, br=7)[source]

Estimate the number of non-Clifford gates and logical qubits for a quantum phase estimation algorithm in first quantization using a plane-wave basis.

To estimate the gate and qubit costs for implementing this method, the number of plane waves, the number of electrons and the unit cell volume need to be defined. The costs can then be computed using the functions gate_cost() and qubit_cost() with a target error that has the default value of 0.0016 Ha (chemical accuracy). Atomic units are used throughout the class.

Parameters
• n (int) – number of plane waves

• eta (int) – number of electrons

• omega (float) – unit cell volume

• error (float) – target error in the algorithm

• charge (int) – total electric charge of the system

• br (int) – number of bits for ancilla qubit rotation

Example

>>> n = 100000
>>> eta = 156
>>> omega = 1145.166
>>> algo = FirstQuantization(n, eta, omega)
>>> print(algo.lamb,  # the 1-Norm of the Hamiltonian
>>>       algo.gates, # estimated number of non-Clifford gates
>>>       algo.qubits # estimated number of logical qubits
>>>       )
649912.4801542697 1.10e+13 4416


Following PRX Quantum 2, 040332 (2021) , the target algorithm error, $$\epsilon$$, is distributed among four different sources of error using Eq. (131)

$\epsilon^2 \geq \epsilon_{qpe}^2 + (\epsilon_{\mathcal{M}} + \epsilon_R + \epsilon_T)^2,$

where $$\epsilon_{qpe}$$ is the quantum phase estimation error and $$\epsilon_{\mathcal{M}}$$, $$\epsilon_R$$, and $$\epsilon_T$$ are defined in Eqs. (132-134).

Here, we fix $$\epsilon_{\mathcal{M}} = \epsilon_R = \epsilon_T = \alpha \epsilon$$ with a default value of $$\alpha = 0.01$$ and obtain

$\epsilon_{qpe} = \sqrt{\epsilon^2 [1 - (3 \alpha)^2]}.$

Note that the user only needs to define the target algorithm error $$\epsilon$$. The error distribution takes place inside the functions.

grad_method = None
num_wires = -1
 estimation_cost(n, eta, omega, error[, br, …]) Return the number of calls to the unitary needed to achieve the desired error in quantum phase estimation. gate_cost(n, eta, omega, error[, br, charge]) Return the total number of Toffoli gates needed to implement the first quantization algorithm. norm(n, eta, omega, error[, br, charge]) Return the 1-norm of a first-quantized Hamiltonian in the plane-wave basis. qubit_cost(n, eta, omega, error[, br, charge]) Return the number of logical qubits needed to implement the first quantization algorithm. success_prob(n, br) Return the probability of success for state preparation. unitary_cost(n, eta, omega, error[, br, charge]) Return the number of Toffoli gates needed to implement the qubitization unitary operator.
static estimation_cost(n, eta, omega, error, br=7, charge=0)[source]

Return the number of calls to the unitary needed to achieve the desired error in quantum phase estimation.

The expression for computing the cost is taken from Eq. (125) of [PRX Quantum 2, 040332 (2021)].

Parameters
• n (int) – number of plane waves

• eta (int) – number of electrons

• omega (float) – unit cell volume

• error (float) – target error in the algorithm

• br (int) – number of bits for ancilla qubit rotation

• charge (int) – total electric charge of the system

Returns

number of calls to unitary

Return type

int

Example

>>> n = 100000
>>> eta = 156
>>> omega = 1145.166
>>> error = 0.01
>>> estimation_cost(n, eta, omega, error)
102133985

static gate_cost(n, eta, omega, error, br=7, charge=0)[source]

Return the total number of Toffoli gates needed to implement the first quantization algorithm.

The expression for computing the cost is taken from Eq. (125) of [PRX Quantum 2, 040332 (2021)].

Parameters
• n (int) – number of plane waves

• eta (int) – number of electrons

• omega (float) – unit cell volume

• error (float) – target error in the algorithm

• br (int) – number of bits for ancilla qubit rotation

• charge (int) – total electric charge of the system

Returns

the number of Toffoli gates needed to implement the first quantization algorithm

Return type

int

Example

>>> n = 100000
>>> eta = 156
>>> omega = 169.69608
>>> error = 0.01
>>> gate_cost(n, eta, omega, error)
3676557345574

static norm(n, eta, omega, error, br=7, charge=0)[source]

Return the 1-norm of a first-quantized Hamiltonian in the plane-wave basis.

The expressions needed for computing the norm are taken from [PRX Quantum 2, 040332 (2021)]. The norm is computed assuming that amplitude ampliﬁcation is performed.

Parameters
• n (int) – number of plane waves

• eta (int) – number of electrons

• omega (float) – unit cell volume

• error (float) – target error in the algorithm

• br (int) – number of bits for ancilla qubit rotation

• charge (int) – total electric charge of the system

Returns

1-norm of a first-quantized Hamiltonian in the plane-wave basis

Return type

float

Example

>>> n = 10000
>>> eta = 156
>>> omega = 1145.166
>>> error = 0.001
>>> norm(n, eta, omega, error)
281053.75612801575


To compute the norm, for numerical convenience, we use the following modified expressions to obtain parameters that contain a sum over $$\frac{1}{\left \| \nu \right \|^k}$$ where $$\nu$$ denotes an element of the set of reciprocal lattice vectors, $$G_0$$, and $$k \in \left \{ 1, 2 \right \}$$.

For $$\lambda_{\nu}$$ defined in Eq. (25) of PRX Quantum 2, 040332 (2021) as

$\lambda_{\nu} = \sum_{\nu \in G_0} \frac{1}{\left \| \nu \right \|^2},$

we follow Eq. (F6) of PRX 8, 011044 (2018) and use

$\lambda_{\nu} = 4\pi \left ( \frac{\sqrt{3}}{2} N^{1/3} - 1 \right) + 3 - \frac{3}{N^{1/3}} + 3 \int_{x=1}^{N^{1/3}} \int_{y=1}^{N^{1/3}} \frac{1}{x^2 + y^2} dydx.$

We also need to compute $$\lambda^{\alpha}_{\nu}$$ defined in Eq. (123) of PRX Quantum 2, 040332 (2021)

$\lambda^{\alpha}_{\nu} = \alpha \sum_{\nu \in G_0} \frac{\left \lceil \mathcal{M}(2^{\mu - 2}) / \left \| \nu \right \|^2 \right \rceil}{\mathcal{M} 2^{2\mu - 4}},$

which we compute here, for $$\alpha = 1$$, as

$\lambda^{1}_{\nu} = \lambda_{\nu} + \epsilon_l,$

where $$\epsilon_l$$ is simply defined as the difference of $$\lambda^{1}_{\nu}$$ and $$\lambda_{\nu}$$. We follow Eq. (113) of PRX Quantum 2, 040332 (2021) to derive an upper bound for its absolute value:

$|\epsilon_l| \le \frac{4}{2^{n_m}} (7 \times 2^{n_p + 1} + 9 n_p - 11 - 3 \times 2^{-n_p}),$

where $$\mathcal{M} = 2^{n_m}$$ and $$n_m$$ is defined in Eq. (132) of PRX Quantum 2, 040332 (2021). Finally, for $$p_{\nu}$$ defined in Eq. (128) of PRX Quantum 2, 040332 (2021)

$p_{\nu} = \sum_{\mu = 2}^{n_p + 1} \sum_{\nu \in B_{\mu}} \frac{\left \lceil M(2^{\mu-2} / \left \| \nu \right \|)^2 \right \rceil}{M 2^{2\mu} 2^{n_{\mu} + 1}},$

we use the upper bound from Eq. (29) in arXiv:1807.09802v2 which gives $$p_{\nu} = 0.2398$$.

static qubit_cost(n, eta, omega, error, br=7, charge=0)[source]

Return the number of logical qubits needed to implement the first quantization algorithm.

The expression for computing the cost is taken from Eq. (101) of [arXiv:2204.11890v1].

Parameters
• n (int) – number of plane waves

• eta (int) – number of electrons

• omega (float) – unit cell volume

• error (float) – target error in the algorithm

• br (int) – number of bits for ancilla qubit rotation

• charge (int) – total electric charge of the system

Returns

number of logical qubits needed to implement the first quantization algorithm

Return type

int

Example

>>> n = 100000
>>> eta = 156
>>> omega = 169.69608
>>> error = 0.01
>>> qubit_cost(n, eta, omega, error)
4377

static success_prob(n, br)[source]

Return the probability of success for state preparation.

The expression for computing the probability of success is taken from Eqs. (59, 60) of [PRX Quantum 2, 040332 (2021)].

Parameters
• n (int) – number of basis states to create an equal superposition for state preparation

• br (int) – number of bits for ancilla qubit rotation

Returns

probability of success for state preparation

Return type

float

Example

>>> n = 3
>>> br = 8
>>> success_prob(n, br)
0.9999928850303523

static unitary_cost(n, eta, omega, error, br=7, charge=0)[source]

Return the number of Toffoli gates needed to implement the qubitization unitary operator.

The expression for computing the cost is taken from Eq. (125) of [PRX Quantum 2, 040332 (2021)].

Parameters
• n (int) – number of plane waves

• eta (int) – number of electrons

• omega (float) – unit cell volume

• error (float) – target error in the algorithm

• br (int) – number of bits for ancilla qubit rotation

• charge (int) – total electric charge of the system

Returns

the number of Toffoli gates needed to implement the qubitization unitary operator

Return type

int

Example

>>> n = 100000
>>> eta = 156
>>> omega = 169.69608
>>> error = 0.01
>>> unitary_cost(n, eta, omega, error)
17033


Using PennyLane

Development

API

Internals