qml.shadows.shadow_expval¶
- shadow_expval(tape, H, k=1)[source]¶
Transform a circuit returning a classical shadow into one that returns the approximate expectation values in a differentiable manner.
See
shadow_expval()
for more usage details.Warning
qml.shadows.shadow_expval
is deprecated and will be removed in v0.40. Please use theshadow_expval()
measurement process in your circuits instead.- Parameters
tape (QNode or QuantumTape or Callable) – A quantum circuit.
H (
Observable
or list[Observable
]) – Observables for which to compute the expectation valuesk (int) – k (int): Number of equal parts to split the shadow’s measurements to compute the median of means.
k=1
corresponds to simply taking the mean over all measurements.
- Returns
The transformed circuit as described in
qml.transform
. Executing this circuit will provide the expectation value estimates for each observable in the form of a tensor.- Return type
qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]
Example
H = qml.Z(0) @ qml.Z(1) dev = qml.device("default.qubit", wires=2, shots=10000) @partial(qml.shadows.shadow_expval, H, k=1) @qml.qnode(dev) def circuit(x): qml.Hadamard(wires=0) qml.CNOT(wires=[0, 1]) qml.RX(x, wires=0) return qml.classical_shadow(wires=[0, 1])
>>> x = np.array(1.2) >>> circuit(x) [array(0.3528)] >>> qml.grad(circuit)(x) -0.9323999999999998