Source code for pennylane.devices.default_gaussian

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=inconsistent-return-statements
"""
The :code:`default.gaussian` device is a simulator for Gaussian continuous-variable
quantum computations, and can be used as a template for writing PennyLane
devices for new CV backends.

It implements the necessary :class:`~pennylane.devices._legacy_device.Device` methods as well as all built-in
:mod:`continuous-variable Gaussian operations <pennylane.ops.cv>`, and provides a very simple simulation of a
Gaussian-based quantum circuit architecture.
"""
import cmath

# pylint: disable=attribute-defined-outside-init,too-many-arguments
import math

import numpy as np
from scipy.special import factorial as fac

import pennylane as qml
from pennylane.ops import Identity

from .._version import __version__
from ._legacy_device import Device

# tolerance for numerical errors
tolerance = 1e-10


# ========================================================
#  auxillary functions
# ========================================================


[docs]def partitions(s, include_singles=True): """Partitions a sequence into all groupings of pairs and singles of elements. Args: s (sequence): the sequence to partition include_singles (bool): if False, only partitions into pairs is returned. Returns: tuple: returns a nested tuple, containing all partitions of the sequence. """ # pylint: disable=too-many-branches if len(s) == 2: if include_singles: yield (s[0],), (s[1],) yield (tuple(s),) else: # pull off a single item and partition the rest if include_singles: if len(s) > 1: item_partition = (s[0],) rest = s[1:] rest_partitions = partitions(rest, include_singles) for p in rest_partitions: yield ((item_partition),) + p else: yield (tuple(s),) # pull off a pair of items and partition the rest for idx1 in range(1, len(s)): item_partition = (s[0], s[idx1]) rest = s[1:idx1] + s[idx1 + 1 :] rest_partitions = partitions(rest, include_singles) for p in rest_partitions: yield ((item_partition),) + p
[docs]def fock_prob(cov, mu, event, hbar=2.0): r"""Returns the probability of detection of a particular PNR detection event. For more details, see: * Kruse, R., Hamilton, C. S., Sansoni, L., Barkhofen, S., Silberhorn, C., & Jex, I. "A detailed study of Gaussian Boson Sampling." `arXiv:1801.07488. (2018). <https://arxiv.org/abs/1801.07488>`_ * Hamilton, C. S., Kruse, R., Sansoni, L., Barkhofen, S., Silberhorn, C., & Jex, I. "Gaussian boson sampling." `Physical review letters, 119(17), 170501. (2017). <https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.170501>`_ Args: cov (array): :math:`2N\times 2N` covariance matrix mu (array): length-:math:`2N` means vector event (array): length-:math:`N` array of non-negative integers representing the PNR detection event of the multi-mode system. hbar (float): (default 2) the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar`. Returns: float: probability of detecting the event """ # number of modes N = len(mu) // 2 I = np.identity(N) # mean displacement of each mode alpha = (mu[:N] + 1j * mu[N:]) / math.sqrt(2 * hbar) # the expectation values (<a_1>, <a_2>,...,<a_N>, <a^\dagger_1>, ..., <a^\dagger_N>) beta = np.concatenate([alpha, alpha.conj()]) x = cov[:N, :N] * 2 / hbar xp = cov[:N, N:] * 2 / hbar p = cov[N:, N:] * 2 / hbar # the (Hermitian) matrix elements <a_i^\dagger a_j> aidaj = (x + p + 1j * (xp - xp.T) - 2 * I) / 4 # the (symmetric) matrix elements <a_i a_j> aiaj = (x - p + 1j * (xp + xp.T)) / 4 # calculate the covariance matrix sigma_Q appearing in the Q function: # Q(alpha) = exp[-(alpha-beta).sigma_Q^{-1}.(alpha-beta)/2]/|sigma_Q| Q = np.block([[aidaj, aiaj.conj()], [aiaj, aidaj.conj()]]) + np.identity(2 * N) # inverse Q matrix Qinv = np.linalg.inv(Q) # 1/sqrt(|Q|) sqrt_Qdet = 1 / math.sqrt(np.linalg.det(Q).real) prefactor = cmath.exp(-beta @ Qinv @ beta.conj() / 2) if np.all(np.array(event) == 0): # all PNRs detect the vacuum state return (prefactor * sqrt_Qdet).real / np.prod(fac(event)) # the matrix X_n = [[0, I_n], [I_n, 0]] O = np.zeros_like(I) X = np.block([[O, I], [I, O]]) gamma = X @ Qinv.conj() @ beta # For each mode, repeat the mode number event[i] times ind = [i for sublist in [[idx] * j for idx, j in enumerate(event)] for i in sublist] # extend the indices for xp-ordering of the Gaussian state ind += [i + N for i in ind] if np.linalg.norm(beta) < tolerance: # state has no displacement part = partitions(ind, include_singles=False) else: part = partitions(ind, include_singles=True) # calculate Hamilton's A matrix: A = X.(I-Q^{-1})* A = X @ (np.identity(2 * N) - Qinv).conj() summation = np.sum([np.prod([gamma[i[0]] if len(i) == 1 else A[i] for i in p]) for p in part]) return (prefactor * sqrt_Qdet * summation).real / np.prod(fac(event))
# ======================================================== # parametrized gates # ========================================================
[docs]def rotation(phi): """Rotation in the phase space. Args: phi (float): rotation parameter Returns: array: symplectic transformation matrix """ return np.array([[math.cos(phi), -math.sin(phi)], [math.sin(phi), math.cos(phi)]])
[docs]def displacement(state, wire, alpha, hbar=2): """Displacement in the phase space. Args: state (tuple): contains covariance matrix and means vector wire (int): wire that the displacement acts on alpha (float): complex displacement Returns: tuple: contains the covariance matrix and the vector of means """ mu = state[1] mu[wire] += alpha.real * math.sqrt(2 * hbar) mu[wire + len(mu) // 2] += alpha.imag * math.sqrt(2 * hbar) return state[0], mu
[docs]def squeezing(r, phi): """Squeezing in the phase space. Args: r (float): squeezing magnitude phi (float): rotation parameter Returns: array: symplectic transformation matrix """ cp = math.cos(phi) sp = math.sin(phi) ch = math.cosh(r) sh = math.sinh(r) return np.array([[ch - cp * sh, -sp * sh], [-sp * sh, ch + cp * sh]])
[docs]def quadratic_phase(s): """Quadratic phase shift. Args: s (float): gate parameter Returns: array: symplectic transformation matrix """ return np.array([[1, 0], [s, 1]])
[docs]def beamsplitter(theta, phi): r"""Beamsplitter. Args: theta (float): transmittivity angle (:math:`t=\cos\theta`) phi (float): phase angle (:math:`r=e^{i\phi}\sin\theta`) Returns: array: symplectic transformation matrix """ cp = math.cos(phi) sp = math.sin(phi) ct = math.cos(theta) st = math.sin(theta) S = np.array( [ [ct, -cp * st, 0, -st * sp], [cp * st, ct, -st * sp, 0], [0, st * sp, ct, -cp * st], [st * sp, 0, cp * st, ct], ] ) return S
[docs]def two_mode_squeezing(r, phi): """Two-mode squeezing. Args: r (float): squeezing magnitude phi (float): rotation parameter Returns: array: symplectic transformation matrix """ cp = math.cos(phi) sp = math.sin(phi) ch = math.cosh(r) sh = math.sinh(r) S = np.array( [ [ch, cp * sh, 0, sp * sh], [cp * sh, ch, sp * sh, 0], [0, sp * sh, ch, -cp * sh], [sp * sh, 0, -cp * sh, ch], ] ) return S
[docs]def controlled_addition(s): """CX gate. Args: s (float): gate parameter Returns: array: symplectic transformation matrix """ S = np.array([[1, 0, 0, 0], [s, 1, 0, 0], [0, 0, 1, -s], [0, 0, 0, 1]]) return S
[docs]def controlled_phase(s): """CZ gate. Args: s (float): gate parameter Returns: array: symplectic transformation matrix """ S = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, s, 1, 0], [s, 0, 0, 1]]) return S
[docs]def interferometer_unitary(U): """InterferometerUnitary Args: U (array): unitary matrix Returns: array: symplectic transformation matrix """ N = 2 * len(U) X = U.real Y = U.imag rows = np.arange(N).reshape(2, -1).T.flatten() S = np.vstack([np.hstack([X, -Y]), np.hstack([Y, X])])[:, rows][rows] return S
# ======================================================== # Arbitrary states and operators # ========================================================
[docs]def squeezed_cov(r, phi, hbar=2): r"""Returns the squeezed covariance matrix of a squeezed state. Args: r (float): the squeezing magnitude p (float): the squeezing phase :math:`\phi` hbar (float): (default 2) the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar` Returns: array: the squeezed state """ cov = np.array([[math.exp(-2 * r), 0], [0, math.exp(2 * r)]]) * hbar / 2 R = rotation(phi / 2) return R @ cov @ R.T
[docs]def vacuum_state(wires, hbar=2.0): r"""Returns the vacuum state. Args: wires (int): the number of wires to initialize in the vacuum state hbar (float): (default 2) the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar` Returns: array: the vacuum state """ means = np.zeros((2 * wires)) cov = np.identity(2 * wires) * hbar / 2 state = [cov, means] return state
[docs]def coherent_state(a, phi=0, hbar=2.0): r"""Returns a coherent state. Args: a (complex) : the displacement phi (float): the phase hbar (float): (default 2) the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar` Returns: array: the coherent state """ alpha = a * cmath.exp(1j * phi) means = np.array([alpha.real, alpha.imag]) * math.sqrt(2 * hbar) cov = np.identity(2) * hbar / 2 state = [cov, means] return state
[docs]def squeezed_state(r, phi, hbar=2.0): r"""Returns a squeezed state. Args: r (float): the squeezing magnitude phi (float): the squeezing phase :math:`\phi` hbar (float): (default 2) the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar` Returns: array: the squeezed state """ means = np.zeros((2)) state = [squeezed_cov(r, phi, hbar), means] return state
[docs]def displaced_squeezed_state(a, phi_a, r, phi_r, hbar=2.0): r"""Returns a squeezed coherent state Args: a (real): the displacement magnitude phi_a (real): the displacement phase r (float): the squeezing magnitude phi_r (float): the squeezing phase :math:`\phi_r` hbar (float): (default 2) the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar` Returns: array: the squeezed coherent state """ alpha = a * cmath.exp(1j * phi_a) means = np.array([alpha.real, alpha.imag]) * math.sqrt(2 * hbar) state = [squeezed_cov(r, phi_r, hbar), means] return state
[docs]def thermal_state(nbar, hbar=2.0): r"""Returns a thermal state. Args: nbar (float): the mean photon number hbar (float): (default 2) the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar` Returns: array: the thermal state """ means = np.zeros([2]) state = [(2 * nbar + 1) * np.identity(2) * hbar / 2, means] return state
[docs]def gaussian_state(cov, mu, hbar=2.0): r"""Returns a Gaussian state. This is simply a bare wrapper function, since the covariance matrix and means vector can be passed via the parameters unchanged. Note that both the covariance and means vector matrix should be in :math:`(\x_1,\dots, \x_N, \p_1, \dots, \p_N)` ordering. Args: cov (array): covariance matrix. Must be dimension :math:`2N\times 2N`, where N is the number of modes mu (array): vector means. Must be length-:math:`2N`, where N is the number of modes hbar (float): (default 2) the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar` Returns: tuple: the mean and the covariance matrix of the Gaussian state """ # pylint: disable=unused-argument # Note: the internal order of mu and cov is different to the one used in Strawberry Fields return cov, mu
[docs]def set_state(state, wire, cov, mu): r"""Inserts a single mode Gaussian into the state representation of the complete system. Args: state (tuple): contains covariance matrix and means vector of existing state wire (Wires): wire corresponding to the new Gaussian state cov (array): covariance matrix to insert mu (array): vector of means to insert Returns: tuple: contains the vector of means and covariance matrix. """ cov0 = state[0] mu0 = state[1] N = len(mu0) // 2 # insert the new state into the means vector mu0[[wire[0], wire[0] + N]] = mu # insert the new state into the covariance matrix ind = np.concatenate([wire.toarray(), wire.toarray() + N]) rows = ind.reshape(-1, 1) cols = ind.reshape(1, -1) cov0[rows, cols] = cov return cov0, mu0
# ======================================================== # expectations # ========================================================
[docs]def photon_number(cov, mu, params, hbar=2.0): r"""Calculates the mean photon number for a given one-mode state. Args: cov (array): :math:`2\times 2` covariance matrix mu (array): length-2 vector of means params (None): no parameters are used for this expectation value hbar (float): (default 2) the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar` Returns: tuple: contains the photon number expectation and variance """ # pylint: disable=unused-argument ex = (np.trace(cov) + mu.T @ mu) / (2 * hbar) - 1 / 2 var = (np.trace(cov @ cov) + 2 * mu.T @ cov @ mu) / (2 * hbar**2) - 1 / 4 return ex, var
[docs]def homodyne(phi=None): """Function factory that returns the Homodyne expectation of a one mode state. Args: phi (float): the default phase space axis to perform the Homodyne measurement Returns: function: A function that accepts a single mode means vector, covariance matrix, and phase space angle phi, and returns the quadrature expectation value and variance. """ if phi is not None: def _homodyne(cov, mu, params, hbar=2.0): """Arbitrary angle homodyne expectation.""" # pylint: disable=unused-argument rot = rotation(phi) muphi = rot.T @ mu covphi = rot.T @ cov @ rot return muphi[0], covphi[0, 0] return _homodyne def _homodyne(cov, mu, params, hbar=2.0): """Arbitrary angle homodyne expectation.""" # pylint: disable=unused-argument rot = rotation(params[0]) muphi = rot.T @ mu covphi = rot.T @ cov @ rot return muphi[0], covphi[0, 0] return _homodyne
[docs]def poly_quad_expectations(cov, mu, wires, device_wires, params, hbar=2.0): r"""Calculates the expectation and variance for an arbitrary polynomial of quadrature operators. Args: cov (array): covariance matrix mu (array): vector of means wires (Wires): wires to calculate the expectation for device_wires (Wires): corresponding wires on the device params (array): a :math:`(2N+1)\times (2N+1)` array containing the linear and quadratic coefficients of the quadrature operators :math:`(\I, \x_0, \p_0, \x_1, \p_1,\dots)` hbar (float): (default 2) the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar` Returns: tuple: the mean and variance of the quadrature-polynomial observable """ Q = params[0] # HACK, we need access to the Poly instance in order to expand the matrix! # TODO: maybe we should make heisenberg_obs a class method or a static method to avoid this being a 'hack'? op = qml.PolyXP(Q, wires=wires) Q = op.heisenberg_obs(device_wires) if Q.ndim == 1: d = np.r_[Q[1::2], Q[2::2]] return d.T @ mu + Q[0], d.T @ cov @ d # convert to the (I, x1,x2,..., p1,p2...) ordering M = np.vstack((Q[0:1, :], Q[1::2, :], Q[2::2, :])) M = np.hstack((M[:, 0:1], M[:, 1::2], M[:, 2::2])) d1 = M[1:, 0] d2 = M[0, 1:] A = M[1:, 1:] d = d1 + d2 k = M[0, 0] d2 = 2 * A @ mu + d k2 = mu.T @ A @ mu + mu.T @ d + k ex = np.trace(A @ cov) + k2 var = 2 * np.trace(A @ cov @ A @ cov) + d2.T @ cov @ d2 modes = np.arange(2 * len(device_wires)).reshape(2, -1).T groenewald_correction = np.sum([np.linalg.det(hbar * A[:, m][n]) for m in modes for n in modes]) var -= groenewald_correction return ex, var
[docs]def fock_expectation(cov, mu, params, hbar=2.0): r"""Calculates the expectation and variance of a Fock state probability. Args: cov (array): :math:`2N\times 2N` covariance matrix mu (array): length-:math:`2N` vector of means params (Sequence[int]): the Fock state to return the expectation value for hbar (float): (default 2) the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar` Returns: tuple: the Fock state expectation and variance """ # pylint: disable=unused-argument ex = fock_prob(cov, mu, params[0], hbar=hbar) # var[|n><n|] = E[|n><n|^2] - E[|n><n|]^2 = E[|n><n|] - E[|n><n|]^2 var = ex - ex**2 return ex, var
[docs]def identity(*_, **__): r"""Returns 1. Returns: tuple: the Fock state expectation and variance """ return 1, 0
# ======================================================== # device # ========================================================
[docs]class DefaultGaussian(Device): r"""Default Gaussian device for PennyLane. Args: wires (int, Iterable[Number, str]): Number of subsystems represented by the device, or iterable that contains unique labels for the subsystems as numbers (i.e., ``[-1, 0, 2]``) or strings (``['ancilla', 'q1', 'q2']``). Default 1 if not specified. shots (None, int): How many times the circuit should be evaluated (or sampled) to estimate the expectation values. If ``None``, the results are analytically computed and hence deterministic. hbar (float): (default 2) the value of :math:`\hbar` in the commutation relation :math:`[\x,\p]=i\hbar` """ name = "Default Gaussian PennyLane plugin" short_name = "default.gaussian" pennylane_requires = __version__ version = __version__ author = "Xanadu Inc." _operation_map = { "Identity": Identity.identity_op, "Snapshot": None, "Beamsplitter": beamsplitter, "ControlledAddition": controlled_addition, "ControlledPhase": controlled_phase, "Displacement": displacement, "QuadraticPhase": quadratic_phase, "Rotation": rotation, "Squeezing": squeezing, "TwoModeSqueezing": two_mode_squeezing, "CoherentState": coherent_state, "DisplacedSqueezedState": displaced_squeezed_state, "SqueezedState": squeezed_state, "ThermalState": thermal_state, "GaussianState": gaussian_state, "InterferometerUnitary": interferometer_unitary, } _observable_map = { "NumberOperator": photon_number, "QuadX": homodyne(0), "QuadP": homodyne(np.pi / 2), "QuadOperator": homodyne(None), "PolyXP": poly_quad_expectations, "FockStateProjector": fock_expectation, "Identity": identity, } _circuits = {} def __init__(self, wires, *, shots=None, hbar=2, analytic=None): super().__init__(wires, shots, analytic=analytic) self.eng = None self.hbar = hbar self._debugger = None self.reset()
[docs] @classmethod def capabilities(cls): capabilities = super().capabilities().copy() capabilities.update( model="cv", supports_analytic_computation=True, supports_finite_shots=True, returns_probs=False, returns_state=False, ) return capabilities
[docs] def pre_apply(self): self.reset()
[docs] def apply(self, operation, wires, par): # translate to wire labels used by device device_wires = self.map_wires(wires) if operation == "Displacement": self._state = displacement( self._state, device_wires.labels[0], par[0] * cmath.exp(1j * par[1]) ) return # we are done here if operation == "GaussianState": if len(device_wires) != self.num_wires: raise ValueError( "GaussianState covariance matrix or means vector is " "the incorrect size for the number of subsystems." ) self._state = self._operation_map[operation](*par, hbar=self.hbar) return # we are done here if operation == "Snapshot": if self._debugger and self._debugger.active: gaussian = {"cov_matrix": self._state[0].copy(), "means": self._state[1].copy()} self._debugger.snapshots[len(self._debugger.snapshots)] = gaussian return # we are done here if "State" in operation: # set the new device state cov, mu = self._operation_map[operation](*par, hbar=self.hbar) # state preparations only act on at most 1 subsystem self._state = set_state(self._state, device_wires[:1], cov, mu) return # we are done here # get the symplectic matrix S = self._operation_map[operation](*par) # expand the symplectic to act on the proper subsystem S = self.expand(S, device_wires) # apply symplectic matrix to the means vector means = S @ self._state[1] # apply symplectic matrix to the covariance matrix cov = S @ self._state[0] @ S.T self._state = [cov, means]
[docs] def expand(self, S, wires): r"""Expands a Symplectic matrix S to act on the entire subsystem. Args: S (array): a :math:`2M\times 2M` Symplectic matrix wires (Wires): wires of the modes that S acts on Returns: array: the resulting :math:`2N\times 2N` Symplectic matrix """ if self.num_wires == 1: # total number of wires is 1, simply return the matrix return S N = self.num_wires w = wires.toarray() M = len(S) // 2 S2 = np.identity(2 * N) if M != len(wires): raise ValueError("Incorrect number of subsystems for provided operation.") S2[w.reshape(-1, 1), w.reshape(1, -1)] = S[:M, :M].copy() # XX S2[(w + N).reshape(-1, 1), (w + N).reshape(1, -1)] = S[M:, M:].copy() # PP S2[w.reshape(-1, 1), (w + N).reshape(1, -1)] = S[:M, M:].copy() # XP S2[(w + N).reshape(-1, 1), w.reshape(1, -1)] = S[M:, :M].copy() # PX return S2
[docs] def expval(self, observable, wires, par): if observable == "PolyXP": cov, mu = self._state ev, var = self._observable_map[observable]( cov, mu, wires, self.wires, par, hbar=self.hbar ) else: cov, mu = self.reduced_state(wires) ev, var = self._observable_map[observable](cov, mu, par, hbar=self.hbar) if self.shots is not None: # estimate the ev # use central limit theorem, sample normal distribution once, only ok if n_eval is large # (see https://en.wikipedia.org/wiki/Berry%E2%80%93Esseen_theorem) ev = np.random.normal(ev, math.sqrt(var / self.shots)) return ev
[docs] def var(self, observable, wires, par): if observable == "PolyXP": cov, mu = self._state _, var = self._observable_map[observable]( cov, mu, wires, self.wires, par, hbar=self.hbar ) else: cov, mu = self.reduced_state(wires) _, var = self._observable_map[observable](cov, mu, par, hbar=self.hbar) return var
[docs] def sample(self, observable, wires, par): """Return a sample of an observable. .. note:: The ``default.gaussian`` plugin only supports sampling from :class:`~.X`, :class:`~.P`, and :class:`~.QuadOperator` observables. Args: observable (str): name of the observable wires (Wires): wires the observable is to be measured on par (tuple): parameters for the observable Returns: array[float]: samples in an array of dimension ``(n, num_wires)`` """ if len(wires) != 1: raise ValueError("Only one mode can be measured in homodyne.") if observable == "QuadX": phi = 0.0 elif observable == "QuadP": phi = np.pi / 2 elif observable == "QuadOperator": phi = par[0] else: raise NotImplementedError(f"default.gaussian does not support sampling {observable}") cov, mu = self.reduced_state(wires) rot = rotation(phi) muphi = rot.T @ mu covphi = rot.T @ cov @ rot stdphi = math.sqrt(covphi[0, 0]) meanphi = muphi[0] return np.random.normal(meanphi, stdphi, self.shots)
[docs] def reset(self): """Reset the device""" # init the state vector to |00..0> self._state = vacuum_state(self.num_wires, self.hbar)
[docs] def reduced_state(self, wires): r"""Returns the covariance matrix and the vector of means of the specified wires. Args: wires (Wires): requested wires Returns: tuple (cov, means): cov is a square array containing the covariance matrix, and means is an array containing the vector of means """ if len(wires) == self.num_wires: # reduced state is full state return self._state # translate to wire labels used by device device_wires = self.map_wires(wires) # reduce rho down to specified subsystems ind = np.concatenate([device_wires.toarray(), device_wires.toarray() + self.num_wires]) rows = ind.reshape(-1, 1) cols = ind.reshape(1, -1) return self._state[0][rows, cols], self._state[1][ind]
@property def operations(self): return set(self._operation_map.keys()) @property def observables(self): return set(self._observable_map.keys()) # pylint: disable=arguments-differ
[docs] def execute(self, operations, observables): if len(observables) > 1: raise qml.QuantumFunctionError("Default gaussian only support single measurements.") return super().execute(operations, observables)
[docs] def batch_execute(self, circuits): results = super().batch_execute(circuits) results = [qml.math.squeeze(res) for res in results] return results