# Copyright 2018-2024 Xanadu Quantum Technologies Inc.# Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at# http://www.apache.org/licenses/LICENSE-2.0# Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""Contains utility functions for building boolean conditionals for noise modelsDeveloper note: Conditionals inherit from BooleanFn and store the condition theyutilize in the ``condition`` attribute."""frominspectimportisclass,signatureimportpennylaneasqmlfrompennylane.boolean_fnimportBooleanFnfrompennylane.measurementsimportMeasurementProcess,MeasurementValue,MidMeasureMPfrompennylane.operationimportAnyWiresfrompennylane.opsimportAdjoint,Controlledfrompennylane.templatesimportControlledSequencefrompennylane.wiresimportWireError,Wires# pylint: disable = unnecessary-lambda, too-few-public-methods, too-many-statements, too-many-branches
[docs]classWiresIn(BooleanFn):"""A conditional for evaluating if the wires of an operation exist in a specified set of wires. Args: wires (Union[Iterable[int, str], Wires]): Sequence of wires for building the wire set. .. seealso:: Users are advised to use :func:`~.wires_in` for a functional construction. """def__init__(self,wires):self._cond=set(wires)self.condition=self._condsuper().__init__(lambdawire:_get_wires(wire).issubset(self._cond),f"WiresIn({list(wires)})")
[docs]classWiresEq(BooleanFn):"""A conditional for evaluating if a given wire is equal to a specified set of wires. Args: wires (Union[Iterable[int, str], Wires]): Sequence of wires for building the wire set. .. seealso:: Users are advised to use :func:`~.wires_eq` for a functional construction. """def__init__(self,wires):self._cond=set(wires)self.condition=self._condsuper().__init__(lambdawire:_get_wires(wire)==self._cond,f"WiresEq({list(wires)iflen(wires)>1elselist(wires)[0]})",)
def_get_wires(val):"""Extract wires as a set from an integer, string, Iterable, Wires or Operation instance. Args: val (Union[int, str, Iterable, ~.wires.Wires, ~.operation.Operation]): object to be used for building the wire set. Returns: set[Union[int, str]]: computed wire set Raises: ValueError: if the wire set cannot be computed for ``val``. """iters=valifisinstance(val,(list,tuple,set,Wires))elsegetattr(val,"wires",[val])try:wires=set().union(*((getattr(w,"wires",None)orWires(w)).tolist()forwiniters))except(TypeError,WireError):raiseValueError(f"Wires cannot be computed for {val}")fromNonereturnwires
[docs]defwires_in(wires):"""Builds a conditional as a :class:`~.BooleanFn` for evaluating if the wires of an input operation are within the specified set of wires. Args: wires (Union(Iterable[int, str], Wires, Operation, MeasurementProcess, int, str)): Object to be used for building the wire set. Returns: :class:`WiresIn <pennylane.noise.conditionals.WiresIn>`: A callable object with signature ``Union(Iterable[int, str], Wires, Operation, MeasurementProcess, int, str)``. It evaluates to ``True`` if the wire set constructed from the input to the callable is a subset of the one built from the specified ``wires`` set. Raises: ValueError: If the wire set cannot be computed from ``wires``. **Example** One may use ``wires_in`` with a given sequence of wires which are used as a wire set: >>> cond_func = qml.noise.wires_in([0, 1]) >>> cond_func(qml.X(0)) True >>> cond_func(qml.X(3)) False Additionally, if an :class:`Operation <pennylane.operation.Operation>` is provided, its ``wires`` are extracted and used to build the wire set: >>> cond_func = qml.noise.wires_in(qml.CNOT(["alice", "bob"])) >>> cond_func("alice") True >>> cond_func("eve") False """returnWiresIn(_get_wires(wires))
[docs]defwires_eq(wires):"""Builds a conditional as a :class:`~.BooleanFn` for evaluating if a given wire is equal to specified set of wires. Args: wires (Union(Iterable[int, str], Wires, Operation, MeasurementProcess, int, str)): Object to be used for building the wire set. Returns: :class:`WiresEq <pennylane.noise.conditionals.WiresEq>`: A callable object with signature ``Union(Iterable[int, str], Wires, Operation, MeasurementProcess, int, str)``. It evaluates to ``True`` if the wire set constructed from the input to the callable is equal to the one built from the specified ``wires`` set. Raises: ValueError: If the wire set cannot be computed from ``wires``. **Example** One may use ``wires_eq`` with a given sequence of wires which are used as a wire set: >>> cond_func = qml.noise.wires_eq(0) >>> cond_func(qml.X(0)) True >>> cond_func(qml.RY(1.23, wires=[3])) False Additionally, if an :class:`Operation <pennylane.operation.Operation>` is provided, its ``wires`` are extracted and used to build the wire set: >>> cond_func = qml.noise.wires_eq(qml.RX(1.0, "dino")) >>> cond_func(qml.RZ(1.23, wires="dino")) True >>> cond_func("eve") False """returnWiresEq(_get_wires(wires))
[docs]classOpIn(BooleanFn):"""A conditional for evaluating if a given operation exist in a specified set of operations. Args: ops (Union[str, class, Operation, list[str, class, Operation]]): Sequence of operation instances, string representations or classes to build the operation set. .. seealso:: Users are advised to use :func:`~.op_in` for a functional construction. """def__init__(self,ops):ops_=[ops]ifnotisinstance(ops,(list,tuple,set))elseopsself._cond=[(opifnotisinstance(op,MeasurementProcess)else(getattr(op,"obs",None)orgetattr(op,"H",None)))foropinops_]self._cops=_get_ops(ops)self.condition=self._copssuper().__init__(self._check_in_ops,f"OpIn({[getattr(op,'__name__',op)foropinself._cops]})")def_check_in_ops(self,operation):xs=operationifisinstance(operation,(list,tuple,set))else[operation]xs=[(opifnotisinstance(op,MeasurementProcess)else(getattr(op,"obs",None)orgetattr(op,"H",None)))foropinxs]cs=_get_ops(xs)try:returnall((cinself._copsifisclass(x)ornotgetattr(x,"arithmetic_depth",0)elseany((_check_arithmetic_ops(op,x)ifisinstance(op,cp)andgetattr(op,"arithmetic_depth",0)elsecp==_get_ops(x)[0])forop,cpinzip(self._cond,self._cops)))forx,cinzip(xs,cs))except:# pylint: disable = bare-except # pragma: no coverraiseValueError("OpIn does not support arithmetic operations ""that cannot be converted to a linear combination")fromNone
[docs]classOpEq(BooleanFn):"""A conditional for evaluating if a given operation is equal to the specified operation. Args: ops (Union[str, class, Operation]): An operation instance, string representation or class to build the operation set. .. seealso:: Users are advised to use :func:`~.op_eq` for a functional construction. """def__init__(self,ops):ops_=[ops]ifnotisinstance(ops,(list,tuple,set))elseopsself._cond=[(opifnotisinstance(op,MeasurementProcess)else(getattr(op,"obs",None)orgetattr(op,"H",None)))foropinops_]self._cops=_get_ops(ops)self.condition=self._copscops_names=list(getattr(op,"__name__",op)foropinself._cops)super().__init__(self._check_eq_ops,f"OpEq({cops_namesiflen(cops_names)>1elsecops_names[0]})",)def_check_eq_ops(self,operation):ifall(isclass(op)ornotgetattr(op,"arithmetic_depth",0)foropinself._cond):return_get_ops(operation)==self._copstry:xs=operationifisinstance(operation,(list,tuple,set))else[operation]xs=[(opifnotisinstance(op,MeasurementProcess)else(getattr(op,"obs",None)orgetattr(op,"H",None)))foropinxs]return(len(xs)==len(self._cond)and_get_ops(xs)==self._copsandall(_check_arithmetic_ops(op,x)for(op,x)inzip(self._cond,xs)ifnotisclass(x)andgetattr(x,"arithmetic_depth",0)))except:# pylint: disable = bare-except # pragma: no coverraiseValueError("OpEq does not support arithmetic operations ""that cannot be converted to a linear combination")fromNone
def_get_ops(val):"""Computes the class for a given argument from its string name, instance, or a sequence of them. Args: val (Union[str, Operation, Iterable]): object to be used for building the operation set. Returns: tuple[class]: tuple of :class:`Operation <pennylane.operation.Operation>` classes corresponding to val. """vals=valifisinstance(val,(list,tuple,set))else[val]op_names=[]for_valinvals:ifisinstance(_val,str):op_names.append(getattr(qml.ops,_val,None)orgetattr(qml,_val))elifisclass(_val)andnotissubclass(_val,MeasurementProcess):op_names.append(_val)elifisinstance(_val,(MeasurementValue,MidMeasureMP)):mid_measure=_valifisinstance(_val,MidMeasureMP)else_val.measurements[0]op_names.append(["MidMeasure","Reset"][getattr(mid_measure,"reset",0)])elifisinstance(_val,MeasurementProcess):obs_name=_get_ops(getattr(_val,"obs",None)orgetattr(_val,"H",None))iflen(obs_name)==1:obs_name=obs_name[0]op_names.append(obs_name)else:op_names.append(getattr(_val,"__class__"))returntuple(op_names)def_check_arithmetic_ops(op1,op2):"""Helper method for comparing two arithmetic operators based on type check of the bases"""# pylint: disable = unnecessary-lambda-assignmentifisinstance(op1,(Adjoint,Controlled,ControlledSequence))orisinstance(op2,(Adjoint,Controlled,ControlledSequence)):return(isinstance(op1,type(op2))andop1.arithmetic_depth==op2.arithmetic_depthand_get_ops(op1.base)==_get_ops(op2.base))lc_cop=lambdaop:qml.ops.LinearCombination(*op.terms())ifisinstance(op1,qml.ops.Exp)orisinstance(op2,qml.ops.Exp):if(notisinstance(op1,type(op2))or(op1.base.arithmetic_depth!=op2.base.arithmetic_depth)ornotqml.math.allclose(op1.coeff,op2.coeff)or(op1.num_steps!=op2.num_steps)):returnFalseifop1.base.arithmetic_depth:return_check_arithmetic_ops(op1.base,op2.base)return_get_ops(op1.base)==_get_ops(op2.base)op1,op2=qml.simplify(op1),qml.simplify(op2)ifop1.arithmetic_depth!=op2.arithmetic_depth:returnFalsecoeffs,op_terms=lc_cop(op1).terms()sprods=[_get_ops(getattr(op_term,"operands",op_term))forop_terminop_terms]def_lc_op(x):coeffs2,op_terms2=lc_cop(x).terms()sprods2=[_get_ops(getattr(op_term,"operands",op_term))forop_terminop_terms2]forcoeff,sprodinzip(coeffs2,sprods2):present,p_index=False,-1whilesprodinsprods[p_index+1:]:p_index=sprods[p_index+1:].index(sprod)+(p_index+1)ifqml.math.allclose(coeff,coeffs[p_index]):coeffs.pop(p_index)sprods.pop(p_index)present=Truebreakifnotpresent:breakreturnpresentreturn_lc_op(op2)
[docs]defop_in(ops):"""Builds a conditional as a :class:`~.BooleanFn` for evaluating if a given operation exist in a specified set of operations. Args: ops (str, class, Operation, list(Union[str, class, Operation, MeasurementProcess])): Sequence of string representations, instances, or classes of the operation(s). Returns: :class:`OpIn <pennylane.noise.conditionals.OpIn>`: A callable object that accepts an :class:`~.Operation` or :class:`~.MeasurementProcess` and returns a boolean output. For an input from: ``Union[str, class, Operation, list(Union[str, class, Operation])]`` and evaluates to ``True`` if the input operation(s) exists in the set of operation(s) specified by ``ops``. For a ``MeasurementProcess`` input, similar evaluation happens on its observable. In both cases, comparison is based on the operation's type, irrespective of wires. **Example** One may use ``op_in`` with a string representation of the name of the operation: >>> cond_func = qml.noise.op_in(["RX", "RY"]) >>> cond_func(qml.RX(1.23, wires=[0])) True >>> cond_func(qml.RZ(1.23, wires=[3])) False >>> cond_func([qml.RX(1.23, wires=[1]), qml.RY(4.56, wires=[2])]) True Additionally, an instance of :class:`Operation <pennylane.operation.Operation>` can also be provided: >>> cond_func = qml.noise.op_in([qml.RX(1.0, "dino"), qml.RY(2.0, "rhino")]) >>> cond_func(qml.RX(1.23, wires=["eve"])) True >>> cond_func(qml.RY(1.23, wires=["dino"])) True >>> cond_func([qml.RX(1.23, wires=[1]), qml.RZ(4.56, wires=[2])]) False """ops=[ops]ifnotisinstance(ops,(list,tuple,set))elseopsreturnOpIn(ops)
[docs]defop_eq(ops):"""Builds a conditional as a :class:`~.BooleanFn` for evaluating if a given operation is equal to the specified operation. Args: ops (str, class, Operation, MeasurementProcess): String representation, an instance or class of the operation, or a measurement process. Returns: :class:`OpEq <pennylane.noise.conditionals.OpEq>`: A callable object that accepts an :class:`~.Operation` or :class:`~.MeasurementProcess` and returns a boolean output. For an input from: ``Union[str, class, Operation]`` it evaluates to ``True`` if the input operations are equal to the operations specified by ``ops``. For a ``MeasurementProcess`` input, similar evaluation happens on its observable. In both cases, the comparison is based on the operation's type, irrespective of wires. **Example** One may use ``op_eq`` with a string representation of the name of the operation: >>> cond_func = qml.noise.op_eq("RX") >>> cond_func(qml.RX(1.23, wires=[0])) True >>> cond_func(qml.RZ(1.23, wires=[3])) False >>> cond_func("CNOT") False Additionally, an instance of :class:`Operation <pennylane.operation.Operation>` can also be provided: >>> cond_func = qml.noise.op_eq(qml.RX(1.0, "dino")) >>> cond_func(qml.RX(1.23, wires=["eve"])) True >>> cond_func(qml.RY(1.23, wires=["dino"])) False """returnOpEq(ops)
[docs]classMeasEq(qml.BooleanFn):"""A conditional for evaluating if a given measurement process is equal to the specified measurement process. Args: mp(Union[Iterable[MeasurementProcess], MeasurementProcess, Callable]): A measurement process instance or a measurement function to build the measurement set. .. seealso:: Users are advised to use :func:`~.meas_eq` for a functional construction. """def__init__(self,mps):self._cond=[mps]ifnotisinstance(mps,(list,tuple,set))elsempsself.condition,self._cmps=[],[]formpinself._cond:if(callable(mp)and(mp:=_MEAS_FUNC_MAP.get(mp,None))isNone)or(isclass(mp)andnotissubclass(mp,MeasurementProcess)):raiseValueError(f"MeasEq should be initialized with a MeasurementProcess, got {mp}")self.condition.append(mp)self._cmps.append(mpifisclass(mp)elsemp.__class__)mp_ops=list(getattr(op,"return_type",op.__class__.__name__)foropinself.condition)mp_names=[repr(op)ifnotisinstance(op,property)elserepr(self.condition[idx].__name__)foridx,opinenumerate(mp_ops)]super().__init__(self._check_meas,f"MeasEq({mp_namesiflen(mp_names)>1elsemp_names[0]})")def_check_meas(self,mp):ifisclass(mp)andnotissubclass(mp,MeasurementProcess):returnFalseifcallable(mp)and(mp:=_MEAS_FUNC_MAP.get(mp,None))isNone:returnFalsecmps=[m_ifisclass(m_)elsem_.__class__form_in([mp]ifnotisinstance(mp,(list,tuple,set))elsemp)]iflen(cmps)!=len(self._cond):returnFalsereturnall(mp1==mp2formp1,mp2inzip(cmps,self._cmps))
[docs]defmeas_eq(mps):"""Builds a conditional as a :class:`~.BooleanFn` for evaluating if a given measurement process is equal to the specified measurement process. Args: mps (MeasurementProcess, Callable): An instance(s) of any class that inherits from :class:`~.MeasurementProcess` or a :mod:`measurement <pennylane.measurements>` function(s). Returns: :class:`MeasEq <pennylane.noise.conditionals.MeasEq>`: A callable object that accepts an instance of :class:`~.MeasurementProcess` and returns a boolean output. It accepts any input from: ``Union[class, function, list(Union[class, function, MeasurementProcess])]`` and evaluates to ``True`` if the input measurement process(es) is equal to the measurement process(es) specified by ``ops``. Comparison is based on the measurement's return type, irrespective of wires, observables or any other relevant attribute. **Example** One may use ``meas_eq`` with an instance of :class:`MeasurementProcess <pennylane.operation.MeasurementProcess>`: >>> cond_func = qml.noise.meas_eq(qml.expval(qml.Y(0))) >>> cond_func(qml.expval(qml.Z(9))) True >>> cond_func(qml.sample(op=qml.Y(0))) False Additionally, a :mod:`measurement <pennylane.measurements>` function can also be provided: >>> cond_func = qml.noise.meas_eq(qml.expval) >>> cond_func(qml.expval(qml.X(0))) True >>> cond_func(qml.probs(wires=[0, 1])) False >>> cond_func(qml.counts(qml.Z(0))) False """returnMeasEq(mps)
_MEAS_FUNC_MAP={qml.expval:qml.measurements.ExpectationMP,qml.var:qml.measurements.VarianceMP,qml.state:qml.measurements.StateMP,qml.density_matrix:qml.measurements.DensityMatrixMP,qml.counts:qml.measurements.CountsMP,qml.sample:qml.measurements.SampleMP,qml.probs:qml.measurements.ProbabilityMP,qml.vn_entropy:qml.measurements.VnEntropyMP,qml.mutual_info:qml.measurements.MutualInfoMP,qml.purity:qml.measurements.PurityMP,qml.classical_shadow:qml.measurements.ClassicalShadowMP,qml.shadow_expval:qml.measurements.ShadowExpvalMP,qml.measure:qml.measurements.MidMeasureMP,}def_rename(newname):"""Decorator function for renaming ``_partial`` function used in ``partial_wires``."""defdecorator(f):f.__name__=newnamereturnfreturndecoratordef_process_instance(operation,*args,**kwargs):"""Process an instance of a PennyLane operation to be used in ``partial_wires``."""ifargs:raiseValueError("Args cannot be provided when operation is an instance, "f"got operation = {operation} and args = {args}.")op_class,op_type=type(operation),[]ifkwargselse["Mappable"]ifisinstance(operation,qml.measurements.MeasurementProcess):op_type.append("MeasFunc")elifisinstance(operation,(qml.ops.Adjoint,qml.ops.Controlled)):op_type.append("MetaFunc")args,metadata=getattr(operation,"_flatten")()is_flat="MeasFunc"inop_typeorisinstance(operation,qml.ops.Controlled)iflen(metadata)>1:kwargs={**dict(metadata[1]ifnotis_flatelsemetadata),**kwargs}returnop_class,op_type,args,kwargsdef_process_callable(operation):"""Process a callable of PennyLane operation to be used in ``partial_wires``."""_cmap={qml.adjoint:qml.ops.Adjoint,qml.ctrl:qml.ops.Controlled}ifoperationin_MEAS_FUNC_MAP:return_MEAS_FUNC_MAP[operation],["MeasFunc"]ifoperationin[qml.adjoint,qml.ctrl]:return_cmap[operation],["MetaFunc"]returnoperation,[]def_process_name(op_class,op_params,arg_params):"""Obtain the name of the operation without its wires for `partial_wires` function."""op_name=f"{op_class.__name__}("forkey,valinarg_params.copy().items():ifkeyinop_params:op_name+=f"{key}={val}, "else:# pragma: no coverdelarg_params[key]returnop_name[:-2]+")"iflen(arg_params)elseop_name[:-1]
[docs]defpartial_wires(operation,*args,**kwargs):"""Builds a partial function based on the given gate operation or measurement process with all argument frozen except ``wires``. Args: operation (Operation | MeasurementProcess | class | Callable): Instance of an operation or the class (callable) corresponding to the operation (measurement). *args: Positional arguments provided in the case where the keyword argument ``operation`` is a class for building the partially evaluated instance. **kwargs: Keyword arguments for the building the partially evaluated instance. These will override any arguments present in the operation instance or ``args``. Returns: Callable: A wrapper function that accepts a sequence of wires as an argument or any object with a ``wires`` property. Raises: ValueError: If ``args`` are provided when the given ``operation`` is an instance. **Example** One may give an instance of :class:`Operation <pennylane.operation.Operation>` for the ``operation`` argument: >>> func = qml.noise.partial_wires(qml.RX(1.2, [12])) >>> func(2) qml.RX(1.2, wires=[2]) >>> func(qml.RY(1.0, ["wires"])) qml.RX(1.2, wires=["wires"]) Additionally, an :class:`Operation <pennylane.operation.Operation>` class can also be provided, while providing required positional arguments via ``args``: >>> func = qml.noise.partial_wires(qml.RX, 3.2, [20]) >>> func(qml.RY(1.0, [0])) qml.RX(3.2, wires=[0]) Moreover, one can use ``kwargs`` instead of positional arguments: >>> func = qml.noise.partial_wires(qml.RX, phi=1.2) >>> func(qml.RY(1.0, [2])) qml.RX(1.2, wires=[2]) >>> rfunc = qml.noise.partial_wires(qml.RX(1.2, [12]), phi=2.3) >>> rfunc(qml.RY(1.0, ["light"])) qml.RX(2.3, wires=["light"]) Finally, one may also use this with an instance of :class:`MeasurementProcess <pennylane.measurement.MeasurementProcess>` >>> func = qml.noise.partial_wires(qml.expval(qml.Z(0))) >>> func(qml.RX(1.2, wires=[9])) qml.expval(qml.Z(9)) """ifcallable(operation):op_class,op_type=_process_callable(operation)else:op_class,op_type,args,kwargs=_process_instance(operation,*args,**kwargs)# Developer Note: We use three TYPES to keep a track of PennyLane ``operation`` we have# 1. "Mappable" -> We can use `map_wires` method of the `operation` with new wires.# 2. "MeasFunc" -> We need to handle observable and/or wires for the measurement process.# 3: "MetaFunc" -> We need to handle base operation for Adjoint or Controlled operation.is_mappable="Mappable"inop_typeifis_mappable:op_type.remove("Mappable")fsignature=signature(getattr(op_class,"__init__",op_class)).parametersparameters=list(fsignature)[int("self"infsignature):]arg_params={**dict(zip(parameters,args)),**kwargs}_fargs={"MeasFunc":"obs","MetaFunc":"base"}if"op"inarg_params:forkey,valin_fargs.items():ifkeyinop_type:arg_params[val]=arg_params.pop("op")breakifop_class==qml.ops.Controlledand"control"inarg_params:arg_params["control_wires"]=arg_params.pop("control")arg_wires=arg_params.pop("wires",None)op_name=_process_name(op_class,parameters,arg_params)@_rename(op_name)def_partial(wires=None,**partial_kwargs):"""Wrapper function for partial_wires"""op_args=arg_paramsop_args["wires"]=wiresorarg_wiresifwiresisnotNone:op_args["wires"]=getattr(wires,"wires",None)or([wires]ifisinstance(wires,(int,str))elselist(wires))ifop_type:_name,_op=_fargs[op_type[0]],"op"ifop_class==qml.measurements.ShadowExpvalMP:_name=_op="H"ifnotop_args.get(_name,None)andpartial_kwargs.get(_op,None):obs=partial_kwargs.pop(_op,None)if_nameinparameters:op_args[_name]=obsifop_args["wires"]isNone:op_args["wires"]=obs.wiresifnotis_mappableand(obs:=op_args.get(_name,None))andop_args["wires"]:op_args[_name]=obs.map_wires(dict(zip(obs.wires,op_args["wires"])))forkey,valinop_args.items():ifkeyinparameters:# pragma: no coverop_args[key]=valifissubclass(op_class,qml.operation.Operation):num_wires=getattr(op_class,"num_wires",AnyWires)if"wires"inop_argsandisinstance(num_wires,int):ifnum_wires<len(op_args["wires"])andnum_wires==1:op_wires=op_args.pop("wires")returntuple(operation(**op_args,wires=wire)forwireinop_wires)ifis_mappableandoperation.wiresisnotNone:returnoperation.map_wires(dict(zip(operation.wires,op_args.pop("wires"))))if"wires"notinparametersor("MeasFunc"inop_typeandany(xinop_argsforxin["obs","H"])):_=op_args.pop("wires",None)returnop_class(**op_args)return_partial