Source code for pennylane.ops.op_math.linear_combination
# Copyright 2024 Xanadu Quantum Technologies Inc.# Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at# http://www.apache.org/licenses/LICENSE-2.0# Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""LinearCombination class"""importitertoolsimportnumbers# pylint: disable=too-many-arguments, protected-access, too-many-instance-attributesfromcopyimportcopyfromtypingimportUnionimportpennylaneasqmlfrompennylane.operationimportObservable,Operatorfrom.sumimportSum
[docs]classLinearCombination(Sum):r"""Operator representing a linear combination of operators. The ``LinearCombination`` is represented as a linear combination of other operators, e.g., :math:`\sum_{k=0}^{N-1} c_k O_k`, where the :math:`c_k` are trainable parameters. .. note:: ``qml.Hamiltonian`` dispatches to :class:`~pennylane.ops.op_math.LinearCombination`. Args: coeffs (tensor_like): coefficients of the ``LinearCombination`` expression observables (Iterable[Observable]): observables in the ``LinearCombination`` expression, of same length as ``coeffs`` grouping_type (str): If not ``None``, compute and store information on how to group commuting observables upon initialization. This information may be accessed when a :class:`~.QNode` containing this ``LinearCombination`` is executed on devices. The string refers to the type of binary relation between Pauli words. Can be ``'qwc'`` (qubit-wise commuting), ``'commuting'``, or ``'anticommuting'``. method (str): The graph colouring heuristic to use in solving minimum clique cover for grouping, which can be ``'lf'`` (Largest First), ``'rlf'`` (Recursive Largest First), ``'dsatur'`` (Degree of Saturation), or ``'gis'`` (IndependentSet). Defaults to ``'lf'``. Ignored if ``grouping_type=None``. id (str): name to be assigned to this ``LinearCombination`` instance .. seealso:: `rustworkx.ColoringStrategy <https://www.rustworkx.org/apiref/rustworkx.ColoringStrategy.html#coloringstrategy>`_ for more information on the ``('lf', 'dsatur', 'gis')`` strategies. **Example:** A ``LinearCombination`` can be created by simply passing the list of coefficients as well as the list of observables: >>> coeffs = [0.2, -0.543] >>> obs = [qml.X(0) @ qml.Z(1), qml.Z(0) @ qml.Hadamard(2)] >>> H = qml.ops.LinearCombination(coeffs, obs) >>> print(H) 0.2 * (X(0) @ Z(1)) + -0.543 * (Z(0) @ H(2)) The same ``LinearCombination`` can be created using the ``qml.Hamiltonian`` alias: >>> H = qml.Hamiltonian(coeffs, obs) >>> print(H) 0.2 * (X(0) @ Z(1)) + -0.543 * (Z(0) @ H(2)) The coefficients can be a trainable tensor, for example: >>> coeffs = tf.Variable([0.2, -0.543], dtype=tf.double) >>> obs = [qml.X(0) @ qml.Z(1), qml.Z(0) @ qml.Hadamard(2)] >>> H = qml.ops.LinearCombination(coeffs, obs) >>> print(H) 0.2 * (X(0) @ Z(1)) + -0.543 * (Z(0) @ H(2)) A ``LinearCombination`` can store information on which commuting observables should be measured together in a circuit: >>> obs = [qml.X(0), qml.X(1), qml.Z(0)] >>> coeffs = np.array([1., 2., 3.]) >>> H = qml.ops.LinearCombination(coeffs, obs, grouping_type='qwc') >>> H.grouping_indices ((0, 1), (2,)) This attribute can be used to compute groups of coefficients and observables: >>> grouped_coeffs = [coeffs[list(indices)] for indices in H.grouping_indices] >>> grouped_obs = [[H.ops[i] for i in indices] for indices in H.grouping_indices] >>> grouped_coeffs [array([1., 2.]), array([3.])] >>> grouped_obs [[X(0), X(1)], [Z(0)]] Devices that evaluate a ``LinearCombination`` expectation by splitting it into its local observables can use this information to reduce the number of circuits evaluated. Note that one can compute the ``grouping_indices`` for an already initialized ``LinearCombination`` by using the :func:`compute_grouping <pennylane.ops.LinearCombination.compute_grouping>` method. """num_wires=qml.operation.AnyWiresgrad_method="A"# supports analytic gradientsbatch_size=Nonendim_params=None# could be (0,) * len(coeffs), but it is not needed. Define at class-leveldef_flatten(self):# note that we are unable to restore grouping type or method without creating new propertiesreturnself.terms(),(self.grouping_indices,)@classmethoddef_unflatten(cls,data,metadata):returncls(data[0],data[1],_grouping_indices=metadata[0])# pylint: disable=arguments-differ@classmethoddef_primitive_bind_call(cls,coeffs,observables,_pauli_rep=None,**kwargs):returncls._primitive.bind(*coeffs,*observables,**kwargs,n_obs=len(observables))def__init__(self,coeffs,observables:list[Operator],grouping_type=None,method="lf",_grouping_indices=None,_pauli_rep=None,id=None,):ifisinstance(observables,Operator):raiseValueError("observables must be an Iterable of Operator's, and not an Operator itself.")ifqml.math.shape(coeffs)[0]!=len(observables):raiseValueError("Could not create valid LinearCombination; ""number of coefficients and operators does not match.")if_pauli_repisNone:_pauli_rep=self._build_pauli_rep_static(coeffs,observables)self._coeffs=coeffsself._ops=list(observables)self._hyperparameters={"ops":self._ops}withqml.QueuingManager.stop_recording():operands=tuple(qml.s_prod(c,op)forc,opinzip(coeffs,observables))super().__init__(*operands,grouping_type=grouping_type,method=method,id=id,_grouping_indices=_grouping_indices,_pauli_rep=_pauli_rep,)@staticmethoddef_build_pauli_rep_static(coeffs,observables):"""PauliSentence representation of the Sum of operations."""ifall(pauli_reps:=[op.pauli_repforopinobservables]):new_rep=qml.pauli.PauliSentence()forc,psinzip(coeffs,pauli_reps):forpw,coeffinps.items():new_rep[pw]+=coeff*creturnnew_repreturnNonedef_check_batching(self):"""Override for LinearCombination, batching is not yet supported."""@propertydefcoeffs(self):"""Return the coefficients defining the LinearCombination. Returns: Iterable[float]): coefficients in the LinearCombination expression """returnself._coeffs@propertydefops(self):"""Return the operators defining the LinearCombination. Returns: Iterable[Observable]): observables in the LinearCombination expression """returnself._ops
[docs]defterms(self):r"""Retrieve the coefficients and operators of the ``LinearCombination``. Returns: tuple[list[tensor_like or float], list[.Operation]]: list of coefficients :math:`c_i` and list of operations :math:`O_i` **Example** >>> coeffs = [1., 2., 3.] >>> ops = [X(0), X(0) @ X(1), X(1) @ X(2)] >>> op = qml.ops.LinearCombination(coeffs, ops) >>> op.terms() ([1.0, 2.0, 3.0], [X(0), X(0) @ X(1), X(1) @ X(2)]) """returnself.coeffs,self.ops
[docs]defcompute_grouping(self,grouping_type="qwc",method="lf"):""" Compute groups of operators and coefficients corresponding to commuting observables of this ``LinearCombination``. .. note:: If grouping is requested, the computed groupings are stored as a list of list of indices in ``LinearCombination.grouping_indices``. Args: grouping_type (str): The type of binary relation between Pauli words used to compute the grouping. Can be ``'qwc'``, ``'commuting'``, or ``'anticommuting'``. Defaults to ``'qwc'``. method (str): The graph colouring heuristic to use in solving minimum clique cover for grouping, which can be ``'lf'`` (Largest First), ``'rlf'`` (Recursive Largest First), ``'dsatur'`` (Degree of Saturation), or ``'gis'`` (Greedy Independent Set). **Example** .. code-block:: python import pennylane as qml a = qml.X(0) b = qml.prod(qml.X(0), qml.X(1)) c = qml.Z(0) obs = [a, b, c] coeffs = [1.0, 2.0, 3.0] op = qml.ops.LinearCombination(coeffs, obs) >>> op.grouping_indices is None True >>> op.compute_grouping(grouping_type="qwc") >>> op.grouping_indices ((2,), (0, 1)) """ifnotself.pauli_rep:raiseValueError("Cannot compute grouping for Sums containing non-Pauli operators.")_,ops=self.terms()self._grouping_indices=qml.pauli.compute_partition_indices(ops,grouping_type=grouping_type,method=method)
@propertydefwires(self):r"""The sorted union of wires from all operators. Returns: (Wires): Combined wires present in all terms, sorted. """returnself._wires@propertydefname(self):return"LinearCombination"@staticmethod@qml.QueuingManager.stop_recording()def_simplify_coeffs_ops(coeffs,ops,pr,cutoff=1.0e-12):"""Simplify coeffs and ops Returns: coeffs, ops, pauli_rep"""iflen(ops)==0:return[],[],pr# try using pauli_rep:ifprisnotNone:iflen(pr)==0:return[],[],pr# collect coefficients and opsnew_coeffs=[]new_ops=[]forpw,coeffinpr.items():pw_op=pw.operation(wire_order=pr.wires)new_ops.append(pw_op)new_coeffs.append(coeff)returnnew_coeffs,new_ops,priflen(ops)==1:returncoeffs,[ops[0].simplify()],prop_as_sum=qml.dot(coeffs,ops)op_as_sum=op_as_sum.simplify(cutoff)new_coeffs,new_ops=op_as_sum.terms()returnnew_coeffs,new_ops,pr
[docs]defcompare(self,other):r"""Determines mathematical equivalence between operators ``LinearCombination`` and other operators are equivalent if they mathematically represent the same operator (their matrix representations are equal), acting on the same wires. .. Warning:: This method does not compute explicit matrices but uses the underlyding operators and coefficients for comparisons. When both operators consist purely of Pauli operators, and therefore have a valid ``op.pauli_rep``, the comparison is cheap. When that is not the case (e.g. one of the operators contains a ``Hadamard`` gate), it can be more expensive as it involves mathematical simplification of both operators. Returns: (bool): True if equivalent. **Examples** >>> H = qml.ops.LinearCombination( ... [0.5, 0.5], ... [qml.PauliZ(0) @ qml.PauliY(1), qml.PauliY(1) @ qml.PauliZ(0) @ qml.Identity("a")] ... ) >>> obs = qml.PauliZ(0) @ qml.PauliY(1) >>> print(H.compare(obs)) True >>> H1 = qml.ops.LinearCombination([1, 1], [qml.PauliX(0), qml.PauliZ(1)]) >>> H2 = qml.ops.LinearCombination([1, 1], [qml.PauliZ(0), qml.PauliX(1)]) >>> H1.compare(H2) False >>> ob1 = qml.ops.LinearCombination([1], [qml.PauliX(0)]) >>> ob2 = qml.Hermitian(np.array([[0, 1], [1, 0]]), 0) >>> ob1.compare(ob2) False """ifisinstance(other,(Operator)):if(pr1:=self.pauli_rep)isnotNoneand(pr2:=other.pauli_rep)isnotNone:pr1.simplify()pr2.simplify()returnpr1==pr2op1=self.simplify()op2=other.simplify()returnqml.equal(op1,op2)raiseValueError("Can only compare a LinearCombination, and a LinearCombination/Observable/Tensor.")
def__matmul__(self,other:Operator)->Operator:"""The product operation between Operator objects."""ifisinstance(other,LinearCombination):coeffs1=self.coeffsops1=self.opsshared_wires=qml.wires.Wires.shared_wires([self.wires,other.wires])iflen(shared_wires)>0:raiseValueError("LinearCombinations can only be multiplied together if they act on ""different sets of wires")coeffs2=other.coeffsops2=other.opscoeffs=qml.math.kron(coeffs1,coeffs2)ops_list=itertools.product(ops1,ops2)terms=[qml.prod(t[0],t[1],lazy=False)fortinops_list]returnqml.ops.LinearCombination(coeffs,terms)ifisinstance(other,Operator):ifother.arithmetic_depth==0:new_ops=[op@otherforopinself.ops]# build new pauli rep using old pauli repif(pr1:=self.pauli_rep)isnotNoneand(pr2:=other.pauli_rep)isnotNone:new_pr=pr1@pr2else:new_pr=NonereturnLinearCombination(self.coeffs,new_ops,_pauli_rep=new_pr)returnqml.prod(self,other)returnNotImplementeddef__add__(self,H:Union[numbers.Number,Operator])->Operator:r"""The addition operation between a LinearCombination and a LinearCombination/Tensor/Observable."""ops=copy(self.ops)self_coeffs=self.coeffsifisinstance(H,numbers.Number)andH==0:returnselfifisinstance(H,LinearCombination):coeffs=qml.math.concatenate([self_coeffs,H.coeffs],axis=0)ops.extend(H.ops)if(pr1:=self.pauli_rep)isnotNoneand(pr2:=H.pauli_rep)isnotNone:_pauli_rep=pr1+pr2else:_pauli_rep=Nonereturnqml.ops.LinearCombination(coeffs,ops,_pauli_rep=_pauli_rep)ifisinstance(H,Operator):coeffs=qml.math.concatenate([self_coeffs,qml.math.cast_like([1.0],self_coeffs)],axis=0)ops.append(H)returnqml.ops.LinearCombination(coeffs,ops)returnNotImplemented__radd__=__add__def__mul__(self,a:Union[int,float,complex])->"LinearCombination":r"""The scalar multiplication operation between a scalar and a LinearCombination."""ifisinstance(a,(int,float,complex)):self_coeffs=self.coeffscoeffs=qml.math.multiply(a,self_coeffs)returnqml.ops.LinearCombination(coeffs,self.ops)returnNotImplemented__rmul__=__mul__def__sub__(self,H:Observable)->Observable:r"""The subtraction operation between a LinearCombination and a LinearCombination/Observable."""ifisinstance(H,(LinearCombination,Observable)):returnself+qml.s_prod(-1.0,H,lazy=False)returnNotImplemented
[docs]defqueue(self,context:Union[qml.QueuingManager,qml.queuing.AnnotatedQueue]=qml.QueuingManager):"""Queues a ``qml.ops.LinearCombination`` instance"""ifqml.QueuingManager.recording():foroinself.ops:context.remove(o)context.append(self)returnself
[docs]defeigvals(self):"""Return the eigenvalues of the specified operator. This method uses pre-stored eigenvalues for standard observables where possible and stores the corresponding eigenvectors from the eigendecomposition. Returns: array: array containing the eigenvalues of the operator """eigvals=[]foropsinself.overlapping_ops:iflen(ops)==1:eigvals.append(qml.math.expand_vector(ops[0].eigvals(),list(ops[0].wires),list(self.wires)))else:tmp_composite=Sum(*ops)# only change compared to CompositeOp.eigvals()eigvals.append(qml.math.expand_vector(tmp_composite.eigendecomposition["eigval"],list(tmp_composite.wires),list(self.wires),))returnself._math_op(qml.math.asarray(eigvals,like=qml.math.get_deep_interface(eigvals)),axis=0)
[docs]defdiagonalizing_gates(self):r"""Sequence of gates that diagonalize the operator in the computational basis. Given the eigendecomposition :math:`O = U \Sigma U^{\dagger}` where :math:`\Sigma` is a diagonal matrix containing the eigenvalues, the sequence of diagonalizing gates implements the unitary :math:`U^{\dagger}`. The diagonalizing gates rotate the state into the eigenbasis of the operator. A ``DiagGatesUndefinedError`` is raised if no representation by decomposition is defined. .. seealso:: :meth:`~.Operator.compute_diagonalizing_gates`. Returns: list[.Operator] or None: a list of operators """diag_gates=[]foropsinself.overlapping_ops:iflen(ops)==1:diag_gates.extend(ops[0].diagonalizing_gates())else:tmp_sum=Sum(*ops)# only change compared to CompositeOp.diagonalizing_gates()eigvecs=tmp_sum.eigendecomposition["eigvec"]diag_gates.append(qml.QubitUnitary(qml.math.transpose(qml.math.conj(eigvecs)),wires=tmp_sum.wires))returndiag_gates
[docs]defmap_wires(self,wire_map:dict):"""Returns a copy of the current ``LinearCombination`` with its wires changed according to the given wire map. Args: wire_map (dict): dictionary containing the old wires as keys and the new wires as values Returns: .LinearCombination: new ``LinearCombination`` """coeffs,ops=self.terms()new_ops=tuple(op.map_wires(wire_map)foropinops)new_op=LinearCombination(coeffs,new_ops)new_op.grouping_indices=self._grouping_indicesreturnnew_op
ifLinearCombination._primitiveisnotNone:@LinearCombination._primitive.def_impldef_(*args,n_obs,**kwargs):coeffs=args[:n_obs]observables=args[n_obs:]returntype.__call__(LinearCombination,coeffs,observables,**kwargs)# this just exists for the docs build for now, since we're waiting until the next PR to fix the docs# pylint: disable=too-few-public-methods
[docs]classHamiltonian:r"""Returns an operator representing a Hamiltonian. The Hamiltonian is represented as a linear combination of other operators, e.g., :math:`\sum_{k=0}^{N-1} c_k O_k`, where the :math:`c_k` are trainable parameters. .. note:: ``qml.Hamiltonian`` dispatches to :class:`~pennylane.ops.op_math.LinearCombination`. Args: coeffs (tensor_like): coefficients of the Hamiltonian expression observables (Iterable[Observable]): observables in the Hamiltonian expression, of same length as coeffs grouping_type (str): If not None, compute and store information on how to group commuting observables upon initialization. This information may be accessed when QNodes containing this Hamiltonian are executed on devices. The string refers to the type of binary relation between Pauli words. Can be ``'qwc'`` (qubit-wise commuting), ``'commuting'``, or ``'anticommuting'``. method (str): The graph colouring heuristic to use in solving minimum clique cover for grouping, which can be ``'lf'`` (Largest First), ``'rlf'`` (Recursive Largest First), ``'dsatur'`` (Degree of Saturation), or ``'gis'`` (Greedy Independent Set). Ignored if ``grouping_type=None``. id (str): name to be assigned to this Hamiltonian instance **Example:** ``qml.Hamiltonian`` takes in a list of coefficients and a list of operators. >>> coeffs = [0.2, -0.543] >>> obs = [qml.X(0) @ qml.Z(1), qml.Z(0) @ qml.Hadamard(2)] >>> H = qml.Hamiltonian(coeffs, obs) >>> print(H) 0.2 * (X(0) @ Z(1)) + -0.543 * (Z(0) @ Hadamard(wires=[2])) The coefficients can be a trainable tensor, for example: >>> coeffs = tf.Variable([0.2, -0.543], dtype=tf.double) >>> obs = [qml.X(0) @ qml.Z(1), qml.Z(0) @ qml.Hadamard(2)] >>> H = qml.Hamiltonian(coeffs, obs) >>> print(H) 0.2 * (X(0) @ Z(1)) + -0.543 * (Z(0) @ Hadamard(wires=[2])) A ``qml.Hamiltonian`` stores information on which commuting observables should be measured together in a circuit: >>> obs = [qml.X(0), qml.X(1), qml.Z(0)] >>> coeffs = np.array([1., 2., 3.]) >>> H = qml.Hamiltonian(coeffs, obs, grouping_type='qwc') >>> H.grouping_indices ((0, 1), (2,)) This attribute can be used to compute groups of coefficients and observables: >>> grouped_coeffs = [coeffs[list(indices)] for indices in H.grouping_indices] >>> grouped_obs = [[H.ops[i] for i in indices] for indices in H.grouping_indices] >>> grouped_coeffs [array([1., 2.]), array([3.])] >>> grouped_obs [[X(0), X(1)], [Z(0)]] Devices that evaluate a ``qml.Hamiltonian`` expectation by splitting it into its local observables can use this information to reduce the number of circuits evaluated. Note that one can compute the ``grouping_indices`` for an already initialized ``qml.Hamiltonian`` by using the :func:`compute_grouping <pennylane.ops.LinearCombination.compute_grouping>` method. .. details:: :title: Old Hamiltonian behaviour The following code examples show the behaviour of ``qml.Hamiltonian`` using old operator arithmetic. See :doc:`Updated Operators </news/new_opmath/>` for more details. The old behaviour can be reactivated by calling the deprecated >>> qml.operation.disable_new_opmath() Alternatively, ``qml.ops.Hamiltonian`` provides a permanent access point for Hamiltonian behaviour before ``v0.36``. >>> coeffs = [0.2, -0.543] >>> obs = [qml.X(0) @ qml.Z(1), qml.Z(0) @ qml.Hadamard(2)] >>> H = qml.Hamiltonian(coeffs, obs) >>> print(H) (-0.543) [Z0 H2] + (0.2) [X0 Z1] The coefficients can be a trainable tensor, for example: >>> coeffs = tf.Variable([0.2, -0.543], dtype=tf.double) >>> obs = [qml.X(0) @ qml.Z(1), qml.Z(0) @ qml.Hadamard(2)] >>> H = qml.Hamiltonian(coeffs, obs) >>> print(H) (-0.543) [Z0 H2] + (0.2) [X0 Z1] The user can also provide custom observables: >>> obs_matrix = np.array([[0.5, 1.0j, 0.0, -3j], [-1.0j, -1.1, 0.0, -0.1], [0.0, 0.0, -0.9, 12.0], [3j, -0.1, 12.0, 0.0]]) >>> obs = qml.Hermitian(obs_matrix, wires=[0, 1]) >>> H = qml.Hamiltonian((0.8, ), (obs, )) >>> print(H) (0.8) [Hermitian0,1] Alternatively, the :func:`~.molecular_hamiltonian` function from the :doc:`/introduction/chemistry` module can be used to generate a molecular Hamiltonian. In many cases, Hamiltonians can be constructed using Pythonic arithmetic operations. For example: >>> qml.Hamiltonian([1.], [qml.X(0)]) + 2 * qml.Z(0) @ qml.Z(1) is equivalent to the following Hamiltonian: >>> qml.Hamiltonian([1, 2], [qml.X(0), qml.Z(0) @ qml.Z(1)]) While scalar multiplication requires native python floats or integer types, addition, subtraction, and tensor multiplication of Hamiltonians with Hamiltonians or other observables is possible with tensor-valued coefficients, i.e., >>> H1 = qml.Hamiltonian(torch.tensor([1.]), [qml.X(0)]) >>> H2 = qml.Hamiltonian(torch.tensor([2., 3.]), [qml.Y(0), qml.X(1)]) >>> obs3 = [qml.X(0), qml.Y(0), qml.X(1)] >>> H3 = qml.Hamiltonian(torch.tensor([1., 2., 3.]), obs3) >>> H3.compare(H1 + H2) True A Hamiltonian can store information on which commuting observables should be measured together in a circuit: >>> obs = [qml.X(0), qml.X(1), qml.Z(0)] >>> coeffs = np.array([1., 2., 3.]) >>> H = qml.Hamiltonian(coeffs, obs, grouping_type='qwc') >>> H.grouping_indices [[0, 1], [2]] This attribute can be used to compute groups of coefficients and observables: >>> grouped_coeffs = [coeffs[indices] for indices in H.grouping_indices] >>> grouped_obs = [[H.ops[i] for i in indices] for indices in H.grouping_indices] >>> grouped_coeffs [tensor([1., 2.], requires_grad=True), tensor([3.], requires_grad=True)] >>> grouped_obs [[qml.X(0), qml.X(1)], [qml.Z(0)]] Devices that evaluate a Hamiltonian expectation by splitting it into its local observables can use this information to reduce the number of circuits evaluated. Note that one can compute the ``grouping_indices`` for an already initialized Hamiltonian by using the :func:`compute_grouping <pennylane.Hamiltonian.compute_grouping>` method. """