Source code for pennylane.ops.qubit.qchem_ops
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This submodule contains the discrete-variable quantum operations that come
from quantum chemistry applications.
"""
# pylint:disable=abstract-method,arguments-differ,protected-access
import functools
from typing import Optional, Union
import numpy as np
from scipy.sparse import csr_matrix
import pennylane as qml
from pennylane.operation import Operation
from pennylane.typing import TensorLike
from pennylane.wires import WiresLike
I4 = np.eye(4)
I16 = np.eye(16)
stack_last = functools.partial(qml.math.stack, axis=-1)
def _single_excitations_matrix(phi: TensorLike, phase_prefactor: TensorLike) -> TensorLike:
"""This helper function unifies the `compute_matrix` methods
of `SingleExcitation`, `SingleExcitationPlus` and `SingleExcitationMinus`.
`phase_prefactor` determines which operation is produced:
`phase_prefactor=0.` : `SingleExcitation`
`phase_prefactor=0.5j` : `SingleExcitationPlus`
`phase_prefactor=-0.5j` : `SingleExcitationMinus`
"""
interface = qml.math.get_interface(phi)
if interface == "tensorflow":
if isinstance(phase_prefactor, complex):
phi = qml.math.cast_like(phi, 1j)
c = qml.math.cos(phi / 2)
s = qml.math.sin(phi / 2)
e = qml.math.exp(phase_prefactor * phi)
zeros = qml.math.zeros_like(phi)
rows = [
[e, zeros, zeros, zeros],
[zeros, c, -s, zeros],
[zeros, s, c, zeros],
[zeros, zeros, zeros, e],
]
return qml.math.stack([stack_last(row) for row in rows], axis=-2)
c = qml.math.cos(phi / 2)
s = qml.math.sin(phi / 2)
e = qml.math.exp(phase_prefactor * phi)
mask_e = np.diag([1, 0, 0, 1])
mask_c = np.diag([0, 1, 1, 0])
mask_s = np.array([[0, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 0]])
if qml.math.ndim(phi) == 0:
if interface == "torch":
mask_e = qml.math.convert_like(mask_e, phi)
mask_c = qml.math.convert_like(mask_c, phi)
mask_s = qml.math.convert_like(mask_s, phi)
return e * mask_e + c * mask_c + s * mask_s
return (
qml.math.einsum("i,jk->ijk", e, mask_e)
+ qml.math.einsum("i,jk->ijk", c, mask_c)
+ qml.math.einsum("i,jk->ijk", s, mask_s)
)
def _double_excitations_matrix(phi: TensorLike, phase_prefactor: TensorLike) -> TensorLike:
"""This helper function unifies the `compute_matrix` methods
of `DoubleExcitation`, `DoubleExcitationPlus` and `DoubleExcitationMinus`.
`phase_prefactor` determines which operation is produced:
`phase_prefactor=0.` : `DoubleExcitation`
`phase_prefactor=0.5j` : `DoubleExcitationPlus`
`phase_prefactor=-0.5j` : `DoubleExcitationMinus`
"""
interface = qml.math.get_interface(phi)
if interface == "tensorflow" and isinstance(phase_prefactor, complex):
phi = qml.math.cast_like(phi, 1j)
c = qml.math.cos(phi / 2)
s = qml.math.sin(phi / 2)
e = qml.math.exp(phase_prefactor * phi)
if qml.math.ndim(phi) == 0:
diag = qml.math.diag([e] * 3 + [c] + [e] * 8 + [c] + [e] * 3)
if interface == "torch":
return diag + s * qml.math.convert_like(DoubleExcitation.mask_s, phi)
return diag + s * DoubleExcitation.mask_s
if isinstance(phase_prefactor, complex):
c = (1 + 0j) * c
diag = qml.math.stack([e] * 3 + [c] + [e] * 8 + [c] + [e] * 3, axis=-1)
diag = qml.math.einsum("ij,jk->ijk", diag, I16)
off_diag = qml.math.einsum("i,jk->ijk", s, DoubleExcitation.mask_s)
return diag + off_diag
[docs]class SingleExcitation(Operation):
r"""
Single excitation rotation.
.. math:: U(\phi) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos(\phi/2) & -\sin(\phi/2) & 0 \\
0 & \sin(\phi/2) & \cos(\phi/2) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}.
This operation performs a rotation in the two-dimensional subspace :math:`\{|01\rangle,
|10\rangle\}`. The name originates from the occupation-number representation of
fermionic wavefunctions, where the transformation from :math:`|10\rangle` to :math:`|01\rangle`
is interpreted as "exciting" a particle from the first qubit to the second.
**Details:**
* Number of wires: 2
* Number of parameters: 1
* Number of dimensions per parameter: (0,)
* Gradient recipe: The ``SingleExcitation`` operator satisfies a four-term parameter-shift rule
(see Appendix F, https://doi.org/10.1088/1367-2630/ac2cb3):
Args:
phi (float): rotation angle :math:`\phi`
wires (Sequence[int]): the wires the operation acts on
id (str or None): String representing the operation (optional)
**Example**
The following circuit performs the transformation :math:`|10\rangle\rightarrow \cos(
\phi/2)|10\rangle -\sin(\phi/2)|01\rangle`:
.. code-block::
dev = qml.device('default.qubit', wires=2)
@qml.qnode(dev)
def circuit(phi):
qml.X(0)
qml.SingleExcitation(phi, wires=[0, 1])
return qml.state()
circuit(0.1)
"""
num_wires = 2
"""int: Number of wires that the operator acts on."""
num_params = 1
"""int: Number of trainable parameters that the operator depends on."""
ndim_params = (0,)
"""tuple[int]: Number of dimensions per trainable parameter that the operator depends on."""
grad_method = "A"
"""Gradient computation method."""
parameter_frequencies = [(0.5, 1.0)]
"""Frequencies of the operation parameter with respect to an expectation value."""
[docs] def generator(self) -> "qml.Hamiltonian":
w1, w2 = self.wires
return qml.Hamiltonian([0.25, -0.25], [qml.X(w1) @ qml.Y(w2), qml.Y(w1) @ qml.X(w2)])
def __init__(self, phi: TensorLike, wires: WiresLike, id: Optional[str] = None):
super().__init__(phi, wires=wires, id=id)
[docs] @staticmethod
def compute_matrix(phi: TensorLike) -> TensorLike: # pylint: disable=arguments-differ
r"""Representation of the operator as a canonical matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires.
Implicitly, this assumes that the wires of the operator correspond to the global wire order.
.. seealso:: :meth:`~.SingleExcitation.matrix`
Args:
phi (tensor_like or float): rotation angle
Returns:
tensor_like: canonical matrix
**Example**
>>> qml.SingleExcitation.compute_matrix(torch.tensor(0.5))
tensor([[ 1.0000, 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.9689, -0.2474, 0.0000],
[ 0.0000, 0.2474, 0.9689, 0.0000],
[ 0.0000, 0.0000, 0.0000, 1.0000]])
"""
return _single_excitations_matrix(phi, 0.0)
[docs] @staticmethod
def compute_decomposition(phi: TensorLike, wires: WiresLike) -> list["qml.operation.Operator"]:
r"""Representation of the operator as a product of other operators (static method). :
.. math:: O = O_1 O_2 \dots O_n.
.. seealso:: :meth:`~.SingleExcitation.decomposition`.
Args:
phi (float): rotation angle :math:`\phi`
wires (Iterable, Wires): wires that the operator acts on
Returns:
list[Operator]: decomposition into lower level operations
**Example:**
>>> qml.SingleExcitation.compute_decomposition(1.23, wires=(0,1))
[Adjoint(T(wires=[0])),
Hadamard(wires=[0]),
S(wires=[0]),
Adjoint(T(wires=[1])),
Adjoint(S(wires=[1])),
Hadamard(wires=[1]),
CNOT(wires=[1, 0]),
RZ(-0.615, wires=[0]),
RY(0.615, wires=[1]),
CNOT(wires=[1, 0]),
Adjoint(S(wires=[0])),
Hadamard(wires=[0]),
T(wires=[0]),
Hadamard(wires=[1]),
S(wires=[1]),
T(wires=[1])]
"""
# This decomposition was found by plugging the matrix representation
# into transforms.two_qubit_decomposition and post-processing some of
# the resulting single-qubit gates.
decomp_ops = [
qml.adjoint(qml.T)(wires=wires[0]),
qml.Hadamard(wires=wires[0]),
qml.S(wires=wires[0]),
qml.adjoint(qml.T)(wires=wires[1]),
qml.adjoint(qml.S)(wires=wires[1]),
qml.Hadamard(wires=wires[1]),
qml.CNOT(wires=[wires[1], wires[0]]),
qml.RZ(-phi / 2, wires=wires[0]),
qml.RY(phi / 2, wires=wires[1]),
qml.CNOT(wires=[wires[1], wires[0]]),
qml.adjoint(qml.S)(wires=wires[0]),
qml.Hadamard(wires=wires[0]),
qml.T(wires=wires[0]),
qml.Hadamard(wires=wires[1]),
qml.S(wires=wires[1]),
qml.T(wires=wires[1]),
]
return decomp_ops
[docs] def adjoint(self) -> "SingleExcitation":
(phi,) = self.parameters
return SingleExcitation(-phi, wires=self.wires)
[docs] def pow(self, z: Union[int, float]) -> list["qml.operation.Operator"]:
return [SingleExcitation(self.data[0] * z, wires=self.wires)]
[docs] def label(
self,
decimals: Optional[int] = None,
base_label: Optional[str] = None,
cache: Optional[dict] = None,
) -> str:
return super().label(decimals=decimals, base_label=base_label or "G", cache=cache)
[docs]class SingleExcitationMinus(Operation):
r"""
Single excitation rotation with negative phase-shift outside the rotation subspace.
.. math:: U_-(\phi) = \begin{bmatrix}
e^{-i\phi/2} & 0 & 0 & 0 \\
0 & \cos(\phi/2) & -\sin(\phi/2) & 0 \\
0 & \sin(\phi/2) & \cos(\phi/2) & 0 \\
0 & 0 & 0 & e^{-i\phi/2}
\end{bmatrix}.
**Details:**
* Number of wires: 2
* Number of parameters: 1
* Number of dimensions per parameter: (0,)
* Gradient recipe: :math:`\frac{d}{d\phi}f(U_-(\phi)) = \frac{1}{2}\left[f(U_-(\phi+\pi/2)) - f(U_-(\phi-\pi/2))\right]`
where :math:`f` is an expectation value depending on :math:`U_-(\phi)`.
Args:
phi (float): rotation angle :math:`\phi`
wires (Sequence[int] or int): the wires the operation acts on
id (str or None): String representing the operation (optional)
"""
num_wires = 2
"""int: Number of wires that the operator acts on."""
num_params = 1
"""int: Number of trainable parameters that the operator depends on."""
ndim_params = (0,)
"""tuple[int]: Number of dimensions per trainable parameter that the operator depends on."""
grad_method = "A"
"""Gradient computation method."""
parameter_frequencies = [(1,)]
"""Frequencies of the operation parameter with respect to an expectation value."""
[docs] def generator(self) -> "qml.Hamiltonian":
w1, w2 = self.wires
return qml.Hamiltonian(
[-0.25, 0.25, -0.25, -0.25],
[qml.Identity(w1), qml.X(w1) @ qml.Y(w2), qml.Y(w1) @ qml.X(w2), qml.Z(w1) @ qml.Z(w2)],
)
def __init__(self, phi: TensorLike, wires: WiresLike, id: Optional[str] = None):
super().__init__(phi, wires=wires, id=id)
[docs] @staticmethod
def compute_matrix(phi: TensorLike) -> TensorLike: # pylint: disable=arguments-differ
r"""Representation of the operator as a canonical matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires.
Implicitly, this assumes that the wires of the operator correspond to the global wire order.
.. seealso:: :meth:`~.SingleExcitationMinus.matrix`
Args:
phi (tensor_like or float): rotation angle
Returns:
tensor_like: canonical matrix
**Example**
>>> qml.SingleExcitationMinus.compute_matrix(torch.tensor(0.5))
tensor([[ 0.9689-0.2474j, 0.0000+0.0000j, 0.0000+0.0000j, 0.0000+0.0000j],
[ 0.0000+0.0000j, 0.9689+0.0000j, -0.2474+0.0000j, 0.0000+0.0000j],
[ 0.0000+0.0000j, 0.2474+0.0000j, 0.9689+0.0000j, 0.0000+0.0000j],
[ 0.0000+0.0000j, 0.0000+0.0000j, 0.0000+0.0000j, 0.9689-0.2474j]])
"""
return _single_excitations_matrix(phi, -0.5j)
[docs] @staticmethod
def compute_decomposition(phi: TensorLike, wires: WiresLike) -> list["qml.operation.Operator"]:
r"""Representation of the operator as a product of other operators (static method). :
.. math:: O = O_1 O_2 \dots O_n.
.. seealso:: :meth:`~.SingleExcitationMinus.decomposition`.
Args:
phi (float): rotation angle :math:`\phi`
wires (Iterable, Wires): wires that the operator acts on
Returns:
list[Operator]: decomposition into lower level operations
**Example:**
>>> qml.SingleExcitationMinus.compute_decomposition(1.23, wires=(0,1))
[X(0),
X(1),
ControlledPhaseShift(-0.615, wires=[1, 0]),
X(0),
X(1),
ControlledPhaseShift(-0.615, wires=[0, 1]),
CNOT(wires=[0, 1]),
CRY(1.23, wires=[1, 0]),
CNOT(wires=[0, 1])]
"""
decomp_ops = [
qml.X(wires[0]),
qml.X(wires[1]),
qml.ControlledPhaseShift(-phi / 2, wires=[wires[1], wires[0]]),
qml.X(wires[0]),
qml.X(wires[1]),
qml.ControlledPhaseShift(-phi / 2, wires=[wires[0], wires[1]]),
qml.CNOT(wires=[wires[0], wires[1]]),
qml.CRY(phi, wires=[wires[1], wires[0]]),
qml.CNOT(wires=[wires[0], wires[1]]),
]
return decomp_ops
[docs] def adjoint(self) -> "SingleExcitationMinus":
(phi,) = self.parameters
return SingleExcitationMinus(-phi, wires=self.wires)
[docs] def label(
self,
decimals: Optional[int] = None,
base_label: Optional[str] = None,
cache: Optional[dict] = None,
) -> str:
return super().label(decimals=decimals, base_label=base_label or "G₋", cache=cache)
[docs]class SingleExcitationPlus(Operation):
r"""
Single excitation rotation with positive phase-shift outside the rotation subspace.
.. math:: U_+(\phi) = \begin{bmatrix}
e^{i\phi/2} & 0 & 0 & 0 \\
0 & \cos(\phi/2) & -\sin(\phi/2) & 0 \\
0 & \sin(\phi/2) & \cos(\phi/2) & 0 \\
0 & 0 & 0 & e^{i\phi/2}
\end{bmatrix}.
**Details:**
* Number of wires: 2
* Number of parameters: 1
* Number of dimensions per parameter: (0,)
* Gradient recipe: :math:`\frac{d}{d\phi}f(U_+(\phi)) = \frac{1}{2}\left[f(U_+(\phi+\pi/2)) - f(U_+(\phi-\pi/2))\right]`
where :math:`f` is an expectation value depending on :math:`U_+(\phi)`.
Args:
phi (float): rotation angle :math:`\phi`
wires (Sequence[int] or int): the wires the operation acts on
id (str or None): String representing the operation (optional)
"""
num_wires = 2
"""int: Number of wires that the operator acts on."""
num_params = 1
"""int: Number of trainable parameters that the operator depends on."""
ndim_params = (0,)
"""tuple[int]: Number of dimensions per trainable parameter that the operator depends on."""
grad_method = "A"
"""Gradient computation method."""
parameter_frequencies = [(1,)]
"""Frequencies of the operation parameter with respect to an expectation value."""
[docs] def generator(self) -> "qml.Hamiltonian":
w1, w2 = self.wires
return qml.Hamiltonian(
[0.25, 0.25, -0.25, 0.25],
[qml.Identity(w1), qml.X(w1) @ qml.Y(w2), qml.Y(w1) @ qml.X(w2), qml.Z(w1) @ qml.Z(w2)],
)
def __init__(self, phi: TensorLike, wires: WiresLike, id: Optional[str] = None):
super().__init__(phi, wires=wires, id=id)
[docs] @staticmethod
def compute_matrix(phi: TensorLike) -> TensorLike: # pylint: disable=arguments-differ
r"""Representation of the operator as a canonical matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires.
Implicitly, this assumes that the wires of the operator correspond to the global wire order.
.. seealso:: :meth:`~.SingleExcitationPlus.matrix`
Args:
phi (tensor_like or float): rotation angle
Returns:
tensor_like: canonical matrix
**Example**
>>> qml.SingleExcitationPlus.compute_matrix(torch.tensor(0.5))
tensor([[ 0.9689+0.2474j, 0.0000+0.0000j, 0.0000+0.0000j, 0.0000+0.0000j],
[ 0.0000+0.0000j, 0.9689+0.0000j, -0.2474+0.0000j, 0.0000+0.0000j],
[ 0.0000+0.0000j, 0.2474+0.0000j, 0.9689+0.0000j, 0.0000+0.0000j],
[ 0.0000+0.0000j, 0.0000+0.0000j, 0.0000+0.0000j, 0.9689+0.2474j]])
"""
return _single_excitations_matrix(phi, 0.5j)
[docs] @staticmethod
def compute_decomposition(phi: TensorLike, wires: WiresLike) -> list["qml.operation.Operator"]:
r"""Representation of the operator as a product of other operators (static method). :
.. math:: O = O_1 O_2 \dots O_n.
.. seealso:: :meth:`~.SingleExcitationPlus.decomposition`.
Args:
phi (float): rotation angle :math:`\phi`
wires (Iterable, Wires): wires that the operator acts on
Returns:
list[Operator]: decomposition into lower level operations
**Example:**
>>> qml.SingleExcitationPlus.compute_decomposition(1.23, wires=(0,1))
[X(0),
X(1),
ControlledPhaseShift(0.615, wires=[1, 0]),
X(0),
X(1),
ControlledPhaseShift(0.615, wires=[0, 1]),
CNOT(wires=[0, 1]),
CRY(1.23, wires=[1, 0]),
CNOT(wires=[0, 1])]
"""
decomp_ops = [
qml.X(wires[0]),
qml.X(wires[1]),
qml.ControlledPhaseShift(phi / 2, wires=[wires[1], wires[0]]),
qml.X(wires[0]),
qml.X(wires[1]),
qml.ControlledPhaseShift(phi / 2, wires=[wires[0], wires[1]]),
qml.CNOT(wires=[wires[0], wires[1]]),
qml.CRY(phi, wires=[wires[1], wires[0]]),
qml.CNOT(wires=[wires[0], wires[1]]),
]
return decomp_ops
[docs] def adjoint(self) -> "SingleExcitationPlus":
(phi,) = self.parameters
return SingleExcitationPlus(-phi, wires=self.wires)
[docs] def label(
self,
decimals: Optional[int] = None,
base_label: Optional[str] = None,
cache: Optional[dict] = None,
) -> str:
return super().label(decimals=decimals, base_label=base_label or "G₊", cache=cache)
[docs]class DoubleExcitation(Operation):
r"""
Double excitation rotation.
This operation performs an :math:`SO(2)` rotation in the two-dimensional subspace :math:`\{
|1100\rangle,|0011\rangle\}`. More precisely, it performs the transformation
.. math::
&|0011\rangle \rightarrow \cos(\phi/2) |0011\rangle + \sin(\phi/2) |1100\rangle\\
&|1100\rangle \rightarrow \cos(\phi/2) |1100\rangle - \sin(\phi/2) |0011\rangle,
while leaving all other basis states unchanged.
The name originates from the occupation-number representation of fermionic wavefunctions, where
the transformation from :math:`|1100\rangle` to :math:`|0011\rangle` is interpreted as
"exciting" two particles from the first pair of qubits to the second pair of qubits.
**Details:**
* Number of wires: 4
* Number of parameters: 1
* Number of dimensions per parameter: (0,)
* Gradient recipe: The ``DoubleExcitation`` operator satisfies a four-term parameter-shift rule
(see Appendix F, https://doi.org/10.1088/1367-2630/ac2cb3):
Args:
phi (float): rotation angle :math:`\phi`
wires (Sequence[int]): the wires the operation acts on
id (str or None): String representing the operation (optional)
**Example**
The following circuit performs the transformation :math:`|1100\rangle\rightarrow \cos(
\phi/2)|1100\rangle - \sin(\phi/2)|0011\rangle)`:
.. code-block::
dev = qml.device('default.qubit', wires=4)
@qml.qnode(dev)
def circuit(phi):
qml.X(0)
qml.X(1)
qml.DoubleExcitation(phi, wires=[0, 1, 2, 3])
return qml.state()
circuit(0.1)
"""
num_wires = 4
"""int: Number of wires that the operator acts on."""
num_params = 1
"""int: Number of trainable parameters that the operator depends on."""
ndim_params = (0,)
"""tuple[int]: Number of dimensions per trainable parameter that the operator depends on."""
grad_method = "A"
"""Gradient computation method."""
parameter_frequencies = [(0.5, 1.0)]
"""Frequencies of the operation parameter with respect to an expectation value."""
[docs] def generator(self) -> "qml.Hamiltonian":
w0, w1, w2, w3 = self.wires
return qml.Hamiltonian(
[0.0625, 0.0625, -0.0625, 0.0625, -0.0625, 0.0625, -0.0625, -0.0625],
[
qml.X(w0) @ qml.X(w1) @ qml.X(w2) @ qml.Y(w3),
qml.X(w0) @ qml.X(w1) @ qml.Y(w2) @ qml.X(w3),
qml.X(w0) @ qml.Y(w1) @ qml.X(w2) @ qml.X(w3),
qml.X(w0) @ qml.Y(w1) @ qml.Y(w2) @ qml.Y(w3),
qml.Y(w0) @ qml.X(w1) @ qml.X(w2) @ qml.X(w3),
qml.Y(w0) @ qml.X(w1) @ qml.Y(w2) @ qml.Y(w3),
qml.Y(w0) @ qml.Y(w1) @ qml.X(w2) @ qml.Y(w3),
qml.Y(w0) @ qml.Y(w1) @ qml.Y(w2) @ qml.X(w3),
],
)
[docs] def pow(self, z: Union[int, float]) -> list["qml.operation.Operator"]:
return [DoubleExcitation(self.data[0] * z, wires=self.wires)]
def __init__(self, phi: TensorLike, wires: WiresLike, id: Optional[str] = None):
super().__init__(phi, wires=wires, id=id)
mask_s = np.zeros((16, 16))
mask_s[3, 12] = -1
mask_s[12, 3] = 1
[docs] @staticmethod
def compute_matrix(phi: TensorLike) -> TensorLike: # pylint: disable=arguments-differ
r"""Representation of the operator as a canonical matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires.
Implicitly, this assumes that the wires of the operator correspond to the global wire order.
.. seealso:: :meth:`~.DoubleExcitation.matrix`
Args:
phi (tensor_like or float): rotation angle
Returns:
tensor_like: canonical matrix
"""
return _double_excitations_matrix(phi, 0.0)
[docs] @staticmethod
def compute_decomposition(phi: TensorLike, wires: WiresLike) -> list["qml.operation.Operator"]:
r"""Representation of the operator as a product of other operators (static method). :
.. math:: O = O_1 O_2 \dots O_n.
.. seealso:: :meth:`~.DoubleExcitation.decomposition`.
For the source of this decomposition, see page 17 of
`"Local, Expressive, Quantum-Number-Preserving VQE Ansatze for Fermionic Systems" <https://doi.org/10.1088/1367-2630/ac2cb3>`_ .
Args:
phi (float): rotation angle :math:`\phi`
wires (Iterable, Wires): wires that the operator acts on
Returns:
list[Operator]: decomposition into lower level operations
**Example:**
>>> qml.DoubleExcitation.compute_decomposition(1.23, wires=(0,1,2,3))
[CNOT(wires=[2, 3]),
CNOT(wires=[0, 2]),
Hadamard(wires=[3]),
Hadamard(wires=[0]),
CNOT(wires=[2, 3]),
CNOT(wires=[0, 1]),
RY(0.15375, wires=[1]),
RY(-0.15375, wires=[0]),
CNOT(wires=[0, 3]),
Hadamard(wires=[3]),
CNOT(wires=[3, 1]),
RY(0.15375, wires=[1]),
RY(-0.15375, wires=[0]),
CNOT(wires=[2, 1]),
CNOT(wires=[2, 0]),
RY(-0.15375, wires=[1]),
RY(0.15375, wires=[0]),
CNOT(wires=[3, 1]),
Hadamard(wires=[3]),
CNOT(wires=[0, 3]),
RY(-0.15375, wires=[1]),
RY(0.15375, wires=[0]),
CNOT(wires=[0, 1]),
CNOT(wires=[2, 0]),
Hadamard(wires=[0]),
Hadamard(wires=[3]),
CNOT(wires=[0, 2]),
CNOT(wires=[2, 3])]
"""
# This decomposition is the "upside down" version of that on p17 of https://arxiv.org/abs/2104.05695
decomp_ops = [
qml.CNOT(wires=[wires[2], wires[3]]),
qml.CNOT(wires=[wires[0], wires[2]]),
qml.Hadamard(wires=wires[3]),
qml.Hadamard(wires=wires[0]),
qml.CNOT(wires=[wires[2], wires[3]]),
qml.CNOT(wires=[wires[0], wires[1]]),
qml.RY(phi / 8, wires=wires[1]),
qml.RY(-phi / 8, wires=wires[0]),
qml.CNOT(wires=[wires[0], wires[3]]),
qml.Hadamard(wires=wires[3]),
qml.CNOT(wires=[wires[3], wires[1]]),
qml.RY(phi / 8, wires=wires[1]),
qml.RY(-phi / 8, wires=wires[0]),
qml.CNOT(wires=[wires[2], wires[1]]),
qml.CNOT(wires=[wires[2], wires[0]]),
qml.RY(-phi / 8, wires=wires[1]),
qml.RY(phi / 8, wires=wires[0]),
qml.CNOT(wires=[wires[3], wires[1]]),
qml.Hadamard(wires=wires[3]),
qml.CNOT(wires=[wires[0], wires[3]]),
qml.RY(-phi / 8, wires=wires[1]),
qml.RY(phi / 8, wires=wires[0]),
qml.CNOT(wires=[wires[0], wires[1]]),
qml.CNOT(wires=[wires[2], wires[0]]),
qml.Hadamard(wires=wires[0]),
qml.Hadamard(wires=wires[3]),
qml.CNOT(wires=[wires[0], wires[2]]),
qml.CNOT(wires=[wires[2], wires[3]]),
]
return decomp_ops
[docs] def adjoint(self) -> "DoubleExcitation":
(theta,) = self.parameters
return DoubleExcitation(-theta, wires=self.wires)
[docs] def label(
self,
decimals: Optional[int] = None,
base_label: Optional[str] = None,
cache: Optional[dict] = None,
) -> str:
return super().label(decimals=decimals, base_label=base_label or "G²", cache=cache)
[docs]class DoubleExcitationPlus(Operation):
r"""
Double excitation rotation with positive phase-shift outside the rotation subspace.
This operation performs an :math:`SO(2)` rotation in the two-dimensional subspace :math:`\{
|1100\rangle,|0011\rangle\}` while applying a phase-shift on other states. More precisely,
it performs the transformation
.. math::
&|0011\rangle \rightarrow \cos(\phi/2) |0011\rangle - \sin(\phi/2) |1100\rangle\\
&|1100\rangle \rightarrow \cos(\phi/2) |1100\rangle + \sin(\phi/2) |0011\rangle\\
&|x\rangle \rightarrow e^{i\phi/2} |x\rangle,
for all other basis states :math:`|x\rangle`.
**Details:**
* Number of wires: 4
* Number of parameters: 1
* Number of dimensions per parameter: (0,)
* Gradient recipe: :math:`\frac{d}{d\phi}f(U_+(\phi)) = \frac{1}{2}\left[f(U_+(\phi+\pi/2)) - f(U_+(\phi-\pi/2))\right]`
where :math:`f` is an expectation value depending on :math:`U_+(\phi)`
Args:
phi (float): rotation angle :math:`\phi`
wires (Sequence[int]): the wires the operation acts on
id (str or None): String representing the operation (optional)
"""
num_wires = 4
"""int: Number of wires that the operator acts on."""
num_params = 1
"""int: Number of trainable parameters that the operator depends on."""
ndim_params = (0,)
"""tuple[int]: Number of dimensions per trainable parameter that the operator depends on."""
grad_method = "A"
"""Gradient computation method."""
parameter_frequencies = [(1,)]
"""Frequencies of the operation parameter with respect to an expectation value."""
[docs] def generator(self) -> "qml.SparseHamiltonian":
G = -1 * np.eye(16, dtype=np.complex64)
G[3, 3] = G[12, 12] = 0
G[3, 12] = -1j # 3 (dec) = 0011 (bin)
G[12, 3] = 1j # 12 (dec) = 1100 (bin)
H = csr_matrix(-0.5 * G)
return qml.SparseHamiltonian(H, wires=self.wires)
def __init__(self, phi: TensorLike, wires: WiresLike, id: Optional[str] = None):
super().__init__(phi, wires=wires, id=id)
[docs] @staticmethod
def compute_matrix(phi: TensorLike) -> TensorLike: # pylint: disable=arguments-differ
r"""Representation of the operator as a canonical matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires.
Implicitly, this assumes that the wires of the operator correspond to the global wire order.
.. seealso:: :meth:`~.DoubleExcitationPlus.matrix`
Args:
phi (tensor_like or float): rotation angle
Returns:
tensor_like: canonical matrix
"""
return _double_excitations_matrix(phi, 0.5j)
[docs] def adjoint(self) -> "DoubleExcitationPlus":
(theta,) = self.parameters
return DoubleExcitationPlus(-theta, wires=self.wires)
[docs] def label(
self,
decimals: Optional[int] = None,
base_label: Optional[str] = None,
cache: Optional[dict] = None,
) -> str:
return super().label(decimals=decimals, base_label=base_label or "G²₊", cache=cache)
[docs]class DoubleExcitationMinus(Operation):
r"""
Double excitation rotation with negative phase-shift outside the rotation subspace.
This operation performs an :math:`SO(2)` rotation in the two-dimensional subspace :math:`\{
|1100\rangle,|0011\rangle\}` while applying a phase-shift on other states. More precisely,
it performs the transformation
.. math::
&|0011\rangle \rightarrow \cos(\phi/2) |0011\rangle - \sin(\phi/2) |1100\rangle\\
&|1100\rangle \rightarrow \cos(\phi/2) |1100\rangle + \sin(\phi/2) |0011\rangle\\
&|x\rangle \rightarrow e^{-i\phi/2} |x\rangle,
for all other basis states :math:`|x\rangle`.
**Details:**
* Number of wires: 4
* Number of parameters: 1
* Number of dimensions per parameter: (0,)
* Gradient recipe: :math:`\frac{d}{d\phi}f(U_-(\phi)) = \frac{1}{2}\left[f(U_-(\phi+\pi/2)) - f(U_-(\phi-\pi/2))\right]`
where :math:`f` is an expectation value depending on :math:`U_-(\phi)`
Args:
phi (float): rotation angle :math:`\phi`
wires (Sequence[int]): the wires the operation acts on
id (str or None): String representing the operation (optional)
"""
num_wires = 4
"""int: Number of wires that the operator acts on."""
num_params = 1
"""int: Number of trainable parameters that the operator depends on."""
ndim_params = (0,)
"""tuple[int]: Number of dimensions per trainable parameter that the operator depends on."""
grad_method = "A"
"""Gradient computation method."""
parameter_frequencies = [(1,)]
"""Frequencies of the operation parameter with respect to an expectation value."""
[docs] def generator(self) -> "qml.SparseHamiltonian":
G = np.eye(16, dtype=np.complex64)
G[3, 3] = G[12, 12] = 0
G[3, 12] = -1j # 3 (dec) = 0011 (bin)
G[12, 3] = 1j # 12 (dec) = 1100 (bin)
H = csr_matrix(-0.5 * G)
return qml.SparseHamiltonian(H, wires=self.wires)
[docs] @staticmethod
def compute_matrix(phi: TensorLike) -> TensorLike: # pylint: disable=arguments-differ
r"""Representation of the operator as a canonical matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires.
Implicitly, this assumes that the wires of the operator correspond to the global wire order.
.. seealso:: :meth:`~.DoubleExcitationMinus.matrix`
Args:
phi (tensor_like or float): rotation angle
Returns:
tensor_like: canonical matrix
"""
return _double_excitations_matrix(phi, -0.5j)
[docs] def adjoint(self) -> "DoubleExcitationMinus":
(theta,) = self.parameters
return DoubleExcitationMinus(-theta, wires=self.wires)
[docs] def label(
self,
decimals: Optional[int] = None,
base_label: Optional[str] = None,
cache: Optional[dict] = None,
) -> str:
return super().label(decimals=decimals, base_label=base_label or "G²₋", cache=cache)
[docs]class OrbitalRotation(Operation):
r"""
Spin-adapted spatial orbital rotation.
For two neighbouring spatial orbitals :math:`\{|\Phi_{0}\rangle, |\Phi_{1}\rangle\}`, this operation
performs the following transformation
.. math::
&|\Phi_{0}\rangle = \cos(\phi/2)|\Phi_{0}\rangle - \sin(\phi/2)|\Phi_{1}\rangle\\
&|\Phi_{1}\rangle = \cos(\phi/2)|\Phi_{0}\rangle + \sin(\phi/2)|\Phi_{1}\rangle,
with the same orbital operation applied in the :math:`\alpha` and :math:`\beta` spin orbitals.
.. figure:: ../../_static/qchem/orbital_rotation.jpeg
:align: center
:width: 100%
:target: javascript:void(0);
Here, :math:`G(\phi)` represents a single-excitation Givens rotation and :math:`f\text{SWAP}(\pi)`
represents the fermionic swap operator, implemented in PennyLane as the
:class:`~.SingleExcitation` operation and :class:`~.FermionicSWAP` operation, respectively. This
implementation is a modified version of the one given in `Anselmetti et al. (2021) <https://doi.org/10.1088/1367-2630/ac2cb3>`__\ ,
and is consistent with the Jordan-Wigner mapping in interleaved ordering.
**Details:**
* Number of wires: 4
* Number of parameters: 1
* Number of dimensions per parameter: (0,)
* Gradient recipe: The ``OrbitalRotation`` operator has 4 equidistant frequencies
:math:`\{0.5, 1, 1.5, 2\}`, and thus permits an 8-term parameter-shift rule.
(see `Wierichs et al. (2022) <https://doi.org/10.22331/q-2022-03-30-677>`__).
Args:
phi (float): rotation angle :math:`\phi`
wires (Sequence[int]): the wires the operation acts on
id (str or None): String representing the operation (optional)
**Example**
.. code-block::
>>> dev = qml.device('default.qubit', wires=4)
>>> @qml.qnode(dev)
... def circuit(phi):
... qml.BasisState(np.array([1, 1, 0, 0]), wires=[0, 1, 2, 3])
... qml.OrbitalRotation(phi, wires=[0, 1, 2, 3])
... return qml.state()
>>> circuit(0.1)
array([ 0. +0.j, 0. +0.j, 0. +0.j,
0.00249792+0.j, 0. +0.j, 0. +0.j,
0.04991671+0.j, 0. +0.j, 0. +0.j,
-0.04991671+0.j, 0. +0.j, 0. +0.j,
0.99750208+0.j, 0. +0.j, 0. +0.j,
0. +0.j])
"""
num_wires = 4
"""int: Number of wires that the operator acts on."""
num_params = 1
"""int: Number of trainable parameters that the operator depends on."""
ndim_params = (0,)
"""tuple[int]: Number of dimensions per trainable parameter that the operator depends on."""
grad_method = "A"
"""Gradient computation method."""
parameter_frequencies = [(0.5, 1.0, 1.5, 2.0)]
"""Frequencies of the operation parameter with respect to an expectation value."""
[docs] def generator(self) -> "qml.Hamiltonian":
w0, w1, w2, w3 = self.wires
return qml.Hamiltonian(
[0.25, -0.25, 0.25, -0.25],
[
qml.X(w0) @ qml.Z(w1) @ qml.Y(w2),
(qml.Y(w0) @ qml.Z(w1) @ qml.X(w2)),
(qml.X(w1) @ qml.Z(w2) @ qml.Y(w3)),
(qml.Y(w1) @ qml.Z(w2) @ qml.X(w3)),
],
)
def __init__(self, phi: TensorLike, wires: WiresLike, id: Optional[str] = None):
super().__init__(phi, wires=wires, id=id)
mask_s = np.zeros((16, 16))
mask_s[1, 4] = mask_s[2, 8] = mask_s[13, 7] = mask_s[14, 11] = -1
mask_s[4, 1] = mask_s[8, 2] = mask_s[7, 13] = mask_s[11, 14] = 1
mask_cs = np.zeros((16, 16))
mask_cs[6, 3] = mask_cs[3, 9] = mask_cs[12, 6] = mask_cs[9, 12] = -1
mask_cs[3, 6] = mask_cs[9, 3] = mask_cs[6, 12] = mask_cs[12, 9] = 1
mask_s2 = np.zeros((16, 16))
mask_s2[3, 12] = mask_s2[12, 3] = mask_s2[6, 9] = mask_s2[9, 6] = 1
[docs] @staticmethod
def compute_matrix(phi: TensorLike) -> TensorLike: # pylint: disable=arguments-differ
r"""Representation of the operator as a canonical matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires.
Implicitly, this assumes that the wires of the operator correspond to the global wire order.
.. seealso:: :meth:`~.OrbitalRotation.matrix`
Args:
phi (tensor_like or float): rotation angle
Returns:
tensor_like: canonical matrix
"""
# This matrix is the "sign flipped" version of that on p18 of https://arxiv.org/abs/2104.05695,
# where the sign flip is to adjust for the opposite convention used by authors for naming wires.
# Additionally, there was a typo in the sign of a matrix element "s" at [2, 8], which is fixed here.
# It has been further modifided for the decomposition consistent with interleaved JW ordering.
c = qml.math.cos(phi / 2)
s = qml.math.sin(phi / 2)
if qml.math.ndim(phi) == 0:
diag = qml.math.diag(
[1.0, c, c, c**2, c, 1.0, c**2, c, c, c**2, 1.0, c, c**2, c, c, 1.0]
)
if qml.math.get_interface(phi) == "torch":
mask_s = qml.math.convert_like(OrbitalRotation.mask_s, phi)
mask_cs = qml.math.convert_like(OrbitalRotation.mask_cs, phi)
mask_s2 = qml.math.convert_like(OrbitalRotation.mask_s2, phi)
return diag + s * mask_s + (c * s) * mask_cs + s**2 * mask_s2
return (
diag
+ s * OrbitalRotation.mask_s
+ (c * s) * OrbitalRotation.mask_cs
+ s**2 * OrbitalRotation.mask_s2
)
ones = qml.math.ones_like(c)
diag = qml.math.stack(
[ones, c, c, c**2, c, ones, c**2, c, c, c**2, ones, c, c**2, c, c, ones],
axis=-1,
)
diag = qml.math.einsum("ij,jk->ijk", diag, I16)
off_diag = (
qml.math.einsum("i,jk->ijk", s, OrbitalRotation.mask_s)
+ qml.math.einsum("i,jk->ijk", c * s, OrbitalRotation.mask_cs)
+ qml.math.einsum("i,jk->ijk", s**2, OrbitalRotation.mask_s2)
)
return diag + off_diag
[docs] @staticmethod
def compute_decomposition(phi: TensorLike, wires: WiresLike) -> list["qml.operation.Operator"]:
r"""Representation of the operator as a product of other operators (static method). :
.. math:: O = O_1 O_2 \dots O_n.
.. seealso:: :meth:`~.OrbitalRotation.decomposition`.
This operator is decomposed into two :class:`~.SingleExcitation` gates. For a decomposition
into more elementary gates, see page 18 of
`"Local, Expressive, Quantum-Number-Preserving VQE Ansatze for Fermionic Systems" <https://doi.org/10.1088/1367-2630/ac2cb3>`_ .
Args:
phi (float): rotation angle :math:`\phi`
wires (Iterable, Wires): wires that the operator acts on
Returns:
list[Operator]: decomposition into lower level operations
**Example:**
>>> qml.OrbitalRotation.compute_decomposition(1.2, wires=[0, 1, 2, 3])
[qml.FermionicSWAP(np.pi, wires=[1, 2]), SingleExcitation(1.2, wires=[0, 2]),
SingleExcitation(1.2, wires=[1, 3]), qml.FermionicSWAP(np.pi, wires=[1, 2])]
"""
return [
qml.FermionicSWAP(np.pi, wires=[wires[1], wires[2]]),
qml.SingleExcitation(phi, wires=[wires[0], wires[1]]),
qml.SingleExcitation(phi, wires=[wires[2], wires[3]]),
qml.FermionicSWAP(np.pi, wires=[wires[1], wires[2]]),
]
[docs] def adjoint(self) -> "OrbitalRotation":
(phi,) = self.parameters
return OrbitalRotation(-phi, wires=self.wires)
[docs]class FermionicSWAP(Operation):
r"""Fermionic SWAP rotation.
.. math:: U(\phi) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & e^{i \phi/2} \cos(\phi/2) & -ie^{i \phi/2} \sin(\phi/2) & 0 \\
0 & -ie^{i \phi/2} \sin(\phi/2) & e^{i \phi/2} \cos(\phi/2) & 0 \\
0 & 0 & 0 & e^{i \phi}
\end{bmatrix}.
This operation performs a rotation in the adjacent fermionic modes under the Jordan-Wigner mapping,
and is realized by the following transformation of basis states:
.. math::
&|00\rangle \mapsto |00\rangle\\
&|01\rangle \mapsto e^{i \phi/2} \cos(\phi/2)|01\rangle - ie^{i \phi/2} \sin(\phi/2)|10\rangle\\
&|10\rangle \mapsto -ie^{i \phi/2} \sin(\phi/2)|01\rangle + e^{i \phi/2} \cos(\phi/2)|10\rangle\\
&|11\rangle \mapsto e^{i \phi}|11\rangle,
where qubits in :math:`|0\rangle` and :math:`|1\rangle` states represent a hole and a fermion in
the orbital, respectively. It preserves anti-symmetrization of orbitals by applying a phase factor
of :math:`e^{i \phi/2}` to the state for each qubit initially in :math:`|1\rangle` state. Consequently,
for :math:`\phi=\pi`, the given rotation will essentially perform a SWAP operation on the qubits while
applying a global phase of :math:`-1`, if both qubits are :math:`|1\rangle`.
**Details:**
* Number of wires: 2
* Number of parameters: 1
* Number of dimensions per parameter: (0,)
* Gradient recipe: :math:`\frac{d}{d\phi}f(U(\phi)) = \frac{1}{2}\left[f(U(\phi+\pi/2)) - f(U(\phi-\pi/2))\right]`
where :math:`f` is an expectation value depending on :math:`U(\phi)`
Args:
phi (float): rotation angle :math:`\phi`
wires (Sequence[int]): the wires the operation acts on
id (str or None): String representing the operation (optional)
**Example**
The following circuit performs the transformation: :math:`|01\rangle \mapsto e^{i \phi/2}
\cos(\phi/2)|01\rangle - ie^{i \phi/2} \sin(\phi/2)|10\rangle`, where :math:`\phi=0.1`:
.. code-block::
>>> dev = qml.device('default.qubit', wires=2)
>>> @qml.qnode(dev)
... def circuit(phi):
... qml.X(1)
... qml.FermionicSWAP(phi, wires=[0, 1])
... return qml.state()
>>> circuit(0.1)
array([0.+0.j, 0.9975+0.04992j, 0.0025-0.04992j, 0.+0.j])
"""
num_wires = 2
"""int: Number of wires that the operator acts on."""
num_params = 1
"""int: Number of trainable parameters that the operator depends on."""
ndim_params = (0,)
"""tuple[int]: Number of dimensions per trainable parameter that the operator depends on."""
grad_method = "A"
"""Gradient computation method."""
parameter_frequencies = [(1,)]
"""Frequencies of the operation parameter with respect to an expectation value."""
[docs] def generator(self) -> "qml.Hamiltonian":
w1, w2 = self.wires
return qml.Hamiltonian(
[0.5, -0.25, -0.25, -0.25, -0.25],
[
qml.Identity(w1) @ qml.Identity(w2),
qml.Identity(w1) @ qml.Z(w2),
qml.Z(w1) @ qml.Identity(w2),
qml.X(w1) @ qml.X(w2),
qml.Y(w1) @ qml.Y(w2),
],
)
def __init__(self, phi: TensorLike, wires: WiresLike, id: Optional[str] = None):
super().__init__(phi, wires=wires, id=id)
[docs] @staticmethod
def compute_matrix(phi: TensorLike) -> TensorLike: # pylint: disable=arguments-differ
r"""Representation of the operator as a canonical matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires.
Implicitly, this assumes that the wires of the operator correspond to the global wire order.
.. seealso:: :meth:`~.FermionicSWAP.matrix`
Args:
phi (tensor_like or float): rotation angle
Returns:
tensor_like: canonical matrix
**Example**
>>> qml.FermionicSWAP.compute_matrix(torch.tensor(0.5))
tensor([1. +0.j, 0. +0.j , 0. +0.j , 0. +0.j ],
[0. +0.j, 0.939+0.24j, 0.061-0.24j, 0. +0.j ],
[0. +0.j, 0.061-0.24j, 0.939+0.24j, 0. +0.j ],
[0. +0.j, 0. +0.j , 0. +0.j , 0.878+0.479j]])
"""
if qml.math.get_interface(phi) == "tensorflow":
phi = qml.math.cast_like(phi, 1j)
c = qml.math.cast_like(qml.math.cos(phi / 2), 1j)
s = qml.math.cast_like(qml.math.sin(phi / 2), 1j)
g = qml.math.cast_like(qml.math.exp(1j * phi / 2), 1j)
p = qml.math.cast_like(qml.math.exp(1j * phi), 1j)
zeros = qml.math.zeros_like(phi)
ones = qml.math.ones_like(phi)
rows = [
[ones, zeros, zeros, zeros],
[zeros, g * c, -1j * g * s, zeros],
[zeros, -1j * g * s, g * c, zeros],
[zeros, zeros, zeros, p],
]
return qml.math.stack([stack_last(row) for row in rows], axis=-2)
[docs] @staticmethod
def compute_decomposition(phi: TensorLike, wires: WiresLike) -> list["qml.operation.Operator"]:
r"""Representation of the operator as a product of other operators (static method). :
.. math:: O = O_1 O_2 \dots O_n.
.. seealso:: :meth:`~.FermionicSWAP.decomposition`.
Args:
phi (float): rotation angle :math:`\phi`
wires (Iterable, Wires): wires that the operator acts on
Returns:
list[Operator]: decomposition into lower level operations
**Example:**
>>> qml.FermionicSWAP.compute_decomposition(0.2, wires=(0, 1))
[Hadamard(wires=[0]),
Hadamard(wires=[1]),
MultiRZ(0.1, wires=[0, 1]),
Hadamard(wires=[0]),
Hadamard(wires=[1]),
RX(1.5707963267948966, wires=[0]),
RX(1.5707963267948966, wires=[1]),
MultiRZ(0.1, wires=[0, 1]),
RX(-1.5707963267948966, wires=[0]),
RX(-1.5707963267948966, wires=[1]),
RZ(0.1, wires=[0]),
RZ(0.1, wires=[1]),
Exp(0.1j Identity)]
"""
decomp_ops = [
qml.Hadamard(wires=wires[0]),
qml.Hadamard(wires=wires[1]),
qml.MultiRZ(phi / 2, wires=[wires[0], wires[1]]),
qml.Hadamard(wires=wires[0]),
qml.Hadamard(wires=wires[1]),
qml.RX(np.pi / 2, wires=wires[0]),
qml.RX(np.pi / 2, wires=wires[1]),
qml.MultiRZ(phi / 2, wires=[wires[0], wires[1]]),
qml.RX(-np.pi / 2, wires=wires[0]),
qml.RX(-np.pi / 2, wires=wires[1]),
qml.RZ(phi / 2, wires=wires[0]),
qml.RZ(phi / 2, wires=wires[1]),
# for correcting global phase
qml.exp(qml.Identity(wires=[wires[0], wires[1]]), 0.5j * phi),
]
return decomp_ops
[docs] def adjoint(self) -> "FermionicSWAP":
(phi,) = self.parameters
return FermionicSWAP(-phi, wires=self.wires)
[docs] def pow(self, z: Union[int, float]) -> list["qml.operation.Operator"]:
return [FermionicSWAP(self.data[0] * z, wires=self.wires)]
[docs] def label(
self,
decimals: Optional[int] = None,
base_label: Optional[str] = None,
cache: Optional[dict] = None,
) -> str:
return super().label(decimals=decimals, base_label=base_label or "fSWAP", cache=cache)
_modules/pennylane/ops/qubit/qchem_ops
Download Python script
Download Notebook
View on GitHub