# Copyright 2018-2023 Xanadu Quantum Technologies Inc.# Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at# http://www.apache.org/licenses/LICENSE-2.0# Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""This module contains the classes/functions specific for simulation of superconducting transmon hardware systems"""importwarningsfromcollections.abcimportCallablefromdataclassesimportdataclassfromtypingimportUnionimportnumpyasnpimportpennylaneasqmlfrompennylane.pulseimportHardwareHamiltonianfrompennylane.pulse.hardware_hamiltonianimportHardwarePulsefrompennylane.typingimportTensorLikefrompennylane.wiresimportWires# TODO ladder operators once there is qudit support# pylint: disable=unused-argumentdefa(wire,d=2):"""creation operator"""returnqml.s_prod(0.5,qml.X(wire))+qml.s_prod(0.5j,qml.Y(wire))defad(wire,d=2):"""annihilation operator"""returnqml.s_prod(0.5,qml.X(wire))+qml.s_prod(-0.5j,qml.Y(wire))# pylint: disable=too-many-arguments
[docs]deftransmon_interaction(qubit_freq:Union[float,list],connections:list,coupling:Union[float,list],wires:list,anharmonicity=None,d=2,):r"""Returns a :class:`ParametrizedHamiltonian` representing the circuit QED Hamiltonian of a superconducting transmon system. The Hamiltonian is given by .. math:: H = \sum_{q\in \text{wires}} \omega_q b^\dagger_q b_q + \sum_{(i, j) \in \mathcal{C}} g_{ij} \left(b^\dagger_i b_j + b_j^\dagger b_i \right) + \sum_{q\in \text{wires}} \alpha_q b^\dagger_q b^\dagger_q b_q b_q where :math:`[b_p, b_q^\dagger] = \delta_{pq}` are creation and annihilation operators. The first term describes the effect of the dressed qubit frequencies ``qubit_freq`` :math:`= \omega_q/ (2\pi)`, the second term their ``coupling`` :math:`= g_{ij}/(2\pi)` and the last the ``anharmonicity`` :math:`= \alpha_q/(2\pi)`, which all can vary for different qubits. In practice, these operators are restricted to a finite dimension of the local Hilbert space (default ``d=2`` corresponds to qubits). In that case, the anharmonicity is set to :math:`\alpha=0` and ignored. The values of :math:`\omega` and :math:`\alpha` are typically around :math:`5 \times 2\pi \text{GHz}` and :math:`0.3 \times 2\pi \text{GHz}`, respectively. It is common for different qubits to be out of tune with different energy gaps. The coupling strength :math:`g` typically varies between :math:`[0.001, 0.1] \times 2\pi \text{GHz}`. For some example parameters, see e.g. `arXiv:1804.04073 <https://arxiv.org/abs/1804.04073>`_, `arXiv:2203.06818 <https://arxiv.org/abs/2203.06818>`_, or `arXiv:2210.15812 <https://arxiv.org/abs/2210.15812>`_. .. note:: Currently only supporting ``d=2`` with qudit support planned in the future. For ``d=2``, we have :math:`b:=\frac{1}{2}(\sigma^x + i \sigma^y)`. .. seealso:: :func:`~.transmon_drive` Args: qubit_freq (Union[float, list[float], Callable]): List of dressed qubit frequencies. This should be in units of frequency (GHz), and will be converted to angular frequency :math:`\omega` internally where needed, i.e. multiplied by :math:`2 \pi`. When passing a single float all qubits are assumed to have that same frequency. When passing a parametrized function, it must have two arguments, the first one being the trainable parameters and the second one being time. connections (list[tuple(int)]): List of connections ``(i, j)`` between qubits i and j. When the wires in ``connections`` are not contained in ``wires``, a warning is raised. coupling (Union[float, list[float]]): List of coupling strengths. This should be in units of frequency (GHz), and will be converted to angular frequency internally where needed, i.e. multiplied by :math:`2 \pi`. Needs to match the length of ``connections``. When passing a single float need explicit ``wires``. anharmonicity (Union[float, list[float]]): List of anharmonicities. This should be in units of frequency (GHz), and will be converted to angular frequency internally where needed, i.e. multiplied by :math:`2 \pi`. Ignored when ``d=2``. When passing a single float all qubits are assumed to have that same anharmonicity. wires (list): Needs to be of the same length as qubit_freq. Note that there can be additional wires in the resulting operator from the ``connections``, which are treated independently. d (int): Local Hilbert space dimension. Defaults to ``d=2`` and is currently the only supported value. Returns: :class:`~.ParametrizedHamiltonian`: a :class:`~.ParametrizedHamiltonian` representing the transmon interaction **Example** We can set up the transmon interaction Hamiltonian with uniform coefficients by passing ``float`` values. .. code-block:: connections = [[0, 1], [1, 3], [2, 1], [4, 5]] H = qml.pulse.transmon_interaction(qubit_freq=0.5, connections=connections, coupling=1., wires=range(6)) The resulting :class:`~.HardwareHamiltonian:` consists of ``4`` coupling terms and ``6`` qubits because there are six different wire indices in ``connections``. >>> print(H) HardwareHamiltonian: terms=10 We can also provide individual values for each of the qubit energies and coupling strengths, here of order :math:`0.1 \times 2\pi\text{GHz}` and :math:`1 \times 2\pi\text{GHz}`, respectively. .. code-block:: qubit_freqs = [0.5, 0.4, 0.3, 0.2, 0.1, 0.] couplings= [1., 2., 3., 4.] H = qml.pulse.transmon_interaction(qubit_freq=qubit_freqs, connections=connections, coupling=couplings, wires=range(6)) The interaction term is dependent only on the typically fixed transmon energies and coupling strengths. Executing this as a pulse program via :func:`~.evolve` would correspond to all driving fields being turned off. To add a driving field, see :func:`~.transmon_drive`. """ifd!=2:raiseNotImplementedError("Currently only supporting qubits. Qutrits and qudits are planned in the future.")# if wires is None and qml.math.ndim(omega) == 0:# raise ValueError(# f"Cannot instantiate wires automatically. Either need specific wires or a list of omega."# f"Received wires {wires} and omega of type {type(omega)}"# )# wires = wires or list(range(len(omega)))n_wires=len(wires)ifnotWires(wires).contains_wires(Wires(np.unique(connections).tolist())):warnings.warn(f"Caution, wires and connections do not match. "f"I.e., wires in connections {connections} are not contained in the wires {wires}")# Prepare coefficientsifanharmonicityisNone:anharmonicity=[0.0]*n_wires# TODO: make coefficients callable / trainable. Currently not supportedifcallable(qubit_freq)orqml.math.ndim(qubit_freq)==0:qubit_freq=[qubit_freq]*n_wireseliflen(qubit_freq)!=n_wires:raiseValueError(f"Number of qubit frequencies in {qubit_freq} does not match the provided wires = {wires}")ifqml.math.ndim(coupling)==0:coupling=[coupling]*len(connections)iflen(coupling)!=len(connections):raiseValueError(f"Number of coupling terms {coupling} does not match the provided connections = {connections}")settings=TransmonSettings(connections,qubit_freq,coupling,anharmonicity=anharmonicity)omega=[callable_freq_to_angular(f)ifcallable(f)else(2*np.pi*f)forfinqubit_freq]g=[callable_freq_to_angular(c)ifcallable(c)else(2*np.pi*c)forcincoupling]# qubit termcoeffs=list(omega)observables=[ad(i,d)@a(i,d)foriinwires]# coupling termcoeffs+=list(g)observables+=[ad(i,d)@a(j,d)+ad(j,d)@a(i,d)for(i,j)inconnections]# TODO Qudit support. Currently not supported but will be in the future.# if d>2:# if qml.math.ndim(anharmonicity)==0:# anharmonicity = [anharmonicity] * n_wires# if len(anharmonicity) != n_wires:# raise ValueError(f"Number of qubit anharmonicities anharmonicity = {anharmonicity} does not match the provided wires = {wires}")# # anharmonicity term# alpha = [2 * np.pi * a for a in anharmonicity]# coeffs += list(alpha)# observables += [ad(i, d) @ ad(i, d) @ a(i, d) @ a(i, d) for i in wires]returnHardwareHamiltonian(coeffs,observables,settings=settings,reorder_fn=_reorder_AmpPhaseFreq)
defcallable_freq_to_angular(fn):"""Add a factor of 2pi to a callable result to convert from Hz to rad/s"""defangular_fn(p,t):return2*np.pi*fn(p,t)returnangular_fn@dataclassclassTransmonSettings:"""Dataclass that contains the information of a Transmon setup. .. seealso:: :func:`transmon_interaction` Args: connections (List): List `[[idx_q0, idx_q1], ..]` of connected qubits (wires) qubit_freq (List[float, Callable]): coupling (List[list, TensorLike, Callable]): anharmonicity (List[float, Callable]): """connections:listqubit_freq:Union[float,Callable]coupling:Union[list,TensorLike,Callable]anharmonicity:Union[float,Callable]def__eq__(self,other):return(qml.math.all(self.connections==other.connections)andqml.math.all(self.qubit_freq==other.qubit_freq)andqml.math.all(self.coupling==other.coupling)andqml.math.all(self.anharmonicity==other.anharmonicity))def__add__(self,other):ifotherisnotNone:new_connections=list(self.connections)+list(other.connections)new_qubit_freq=list(self.qubit_freq)+list(other.qubit_freq)new_coupling=list(self.coupling)+list(other.coupling)new_anh=list(self.anharmonicity)+list(other.anharmonicity)returnTransmonSettings(new_connections,new_qubit_freq,new_coupling,anharmonicity=new_anh)returnself
[docs]deftransmon_drive(amplitude,phase,freq,wires,d=2):r"""Returns a :class:`ParametrizedHamiltonian` representing the drive term of a transmon qubit. The Hamiltonian is given by .. math:: \Omega(t) \sin\left(\phi(t) + \nu t\right) \sum_q Y_q where :math:`\{Y_q\}` are the Pauli-Y operators on ``wires`` :math:`\{q\}`. The arguments ``amplitude``, ``phase`` and ``freq`` correspond to :math:`\Omega / (2\pi)`, :math:`\phi` and :math:`\nu / (2\pi)`, respectively, and can all be either fixed numbers (``float``) or depend on time (``callable``). If they are time-dependent, they need to abide by the restrictions imposed in :class:`ParametrizedHamiltonian` and have a signature of two parameters, ``(params, t)``. Together with the qubit :math:`Z` terms in :func:`transmon_interaction`, driving with this term can generate :math:`X` and :math:`Y` rotations by setting :math:`\phi` accordingly and driving on resonance (see eqs. (79) - (92) in `1904.06560 <https://arxiv.org/abs/1904.06560>`_). Further, it can generate entangling gates by driving at cross-resonance with a coupled qubit (see eqs. (131) - (137) in `1904.06560 <https://arxiv.org/abs/1904.06560>`_). Such a coupling is described in :func:`transmon_interaction`. For realistic simulations, one may restrict the amplitude, phase and drive frequency parameters. For example, the authors in `2008.04302 <https://arxiv.org/abs/2008.04302>`_ impose the restrictions of a maximum amplitude :math:`\Omega_{\text{max}} = 20 \text{MHz}` and the carrier frequency to deviate at most :math:`\nu - \omega = \pm 1 \text{GHz}` from the qubit frequency :math:`\omega` (see :func:`~.transmon_interaction`). The phase :math:`\phi(t)` is typically a slowly changing function of time compared to :math:`\Omega(t)`. .. note:: Currently only supports ``d=2`` with qudit support planned in the future. For ``d>2``, we have :math:`Y \mapsto i (\sigma^- - \sigma^+)` with lowering and raising operators :math:`\sigma^{\mp}`. .. note:: Due to convention in the respective fields, we omit the factor :math:`\frac{1}{2}` present in the related constructor :func:`~.rydberg_drive` .. seealso:: :func:`~.rydberg_drive`, :func:`~.transmon_interaction` Args: amplitude (Union[float, callable]): Float or callable representing the amplitude of the driving field. This should be in units of frequency (GHz), and will be converted to angular frequency :math:`\Omega(t)` internally where needed, i.e. multiplied by :math:`2 \pi`. phase (Union[float, callable]): Float or callable returning phase :math:`\phi(t)` (in radians). Can be a fixed number (``float``) or depend on time (``callable``) freq (Union[float, callable]): Float or callable representing the frequency of the driving field. This should be in units of frequency (GHz), and will be converted to angular frequency :math:`\nu(t)` internally where needed, i.e. multiplied by :math:`2 \pi`. wires (Union[int, list[int]]): Label of the qubit that the drive acts upon. Can be a list of multiple wires. d (int): Local Hilbert space dimension. Defaults to ``d=2`` and is currently the only supported value. Returns: :class:`~.ParametrizedHamiltonian`: a :class:`~.ParametrizedHamiltonian` representing the transmon interaction **Example** We can construct a drive term acting on qubit ``0`` in the following way. We parametrize the amplitude and phase via :math:`\Omega(t)/(2 \pi) = A \times \sin^2(\pi t)` and :math:`\phi(t) = \phi_0 (t - \frac{1}{2})`. The squared sine ensures that the amplitude will be strictly positive (a requirement for some hardware). For simplicity, we set the drive frequency to zero :math:`\nu=0`. .. code-block:: python3 def amp(A, t): return A * jnp.exp(-t**2) def phase(phi0, t): return phi0 freq = 0 H = qml.pulse.transmon_drive(amp, phase, freq, 0) t = 0. A = 1. phi0 = jnp.pi/2 params = [A, phi0] Evaluated at :math:`t = 0` with the parameters :math:`A = 1` and :math:`\phi_0 = \pi/2` we obtain :math:`2 \pi A \exp(0) \sin(\pi/2 + 0)\sigma^y = 2 \pi \sigma^y`. >>> H(params, t) 6.283185307179586 * Y(0) We can combine ``transmon_drive()`` with :func:`~.transmon_interaction` to create a full driven transmon Hamiltonian. Let us look at a chain of three transmon qubits that are coupled with their direct neighbors. We provide all frequencies in GHz (conversion to angular frequency, i.e. multiplication by :math:`2 \pi`, is taken care of internally where needed). We use values around :math:`\omega = 5 \times 2\pi \text{GHz}` for resonant frequencies, and coupling strenghts on the order of around :math:`g = 0.01 \times 2\pi \text{GHz}`. We parametrize the drive Hamiltonians for the qubits with amplitudes as squared sinusodials of maximum amplitude :math:`A`, and constant drive frequencies of value :math:`\nu`. We set the phase to zero :math:`\phi=0`, and we make the parameters :math:`A` and :math:`\nu` trainable for every qubit. We simulate the evolution for a time window of :math:`[0, 5]\text{ns}`. .. code-block:: python3 import jax jax.config.update("jax_enable_x64", True) qubit_freqs = [5.1, 5., 5.3] connections = [[0, 1], [1, 2]] # qubits 0 and 1 are coupled, as are 1 and 2 g = [0.02, 0.05] H = qml.pulse.transmon_interaction(qubit_freqs, connections, g, wires=range(3)) def amp(max_amp, t): return max_amp * jnp.sin(t) ** 2 freq = qml.pulse.constant # Parametrized constant frequency phase = 0.0 time = 5 for q in range(3): H += qml.pulse.transmon_drive(amp, phase, freq, q) # Parametrized drive for each qubit dev = qml.device("default.qubit", wires=range(3)) @jax.jit @qml.qnode(dev, interface="jax") def qnode(params): qml.evolve(H)(params, time) return qml.expval(qml.Z(0) + qml.Z(1) + qml.Z(2)) We evaluate the Hamiltonian with some arbitrarily chosen maximum amplitudes (here on the order of :math:`0.5 \times 2\pi \text{GHz}`) and set the drive frequency equal to the qubit frequencies. Note how the order of the construction of ``H`` determines the order with which the parameters need to be passed to :class:`~.ParametrizedHamiltonian` and :func:`~.evolve`. We made the drive frequencies trainable parameters by providing constant callables through :func:`~.pulse.constant` instead of fixed values (like the phase). This allows us to differentiate with respect to both the maximum amplitudes and the frequencies and optimize them. >>> max_amp0, max_amp1, max_amp2 = [0.5, 0.3, 0.6] >>> fr0, fr1, fr2 = qubit_freqs >>> params = [max_amp0, fr0, max_amp1, fr1, max_amp2, fr2] >>> qnode(params) Array(-1.57851962, dtype=float64) >>> jax.grad(qnode)(params) [Array(-13.50193649, dtype=float64), Array(3.1112141, dtype=float64), Array(16.40286521, dtype=float64), Array(-4.30485667, dtype=float64), Array(4.75813949, dtype=float64), Array(3.43272354, dtype=float64)] """ifd!=2:raiseNotImplementedError("Currently only supports qubits (d=2). Qutrits and qudits support is planned in the future.")wires=Wires(wires)# TODO: use creation and annihilation operators when introducing qutrits# Note that exp(-iw)a* + exp(iw)a = cos(w)X - sin(w)Y for a=1/2(X+iY)# We compute the `coeffs` and `observables` of the EM fieldcoeffs=[AmplitudeAndPhaseAndFreq(qml.math.sin,amplitude,phase,freq)]drive_y_term=sum(qml.Y(wire)forwireinwires)observables=[drive_y_term]pulses=[HardwarePulse(amplitude,phase,freq,wires)]returnHardwareHamiltonian(coeffs,observables,pulses=pulses,reorder_fn=_reorder_AmpPhaseFreq)
# pylint:disable = too-few-public-methods,too-many-return-statementsclassAmplitudeAndPhaseAndFreq:"""Class storing combined amplitude, phase and freq callables"""def__init__(self,trig_fn,amp,phase,freq,hz_to_rads=2*np.pi):self.amp_is_callable=callable(amp)self.phase_is_callable=callable(phase)self.freq_is_callable=callable(freq)# all 3 callableifself.amp_is_callableandself.phase_is_callableandself.freq_is_callable:defcallable_amp_and_phase_and_freq(params,t):return(hz_to_rads*amp(params[0],t)*trig_fn(phase(params[1],t)+hz_to_rads*freq(params[2],t)*t))self.func=callable_amp_and_phase_and_freqreturn# 2 out of 3 callableifself.amp_is_callableandself.phase_is_callable:defcallable_amp_and_phase(params,t):return(hz_to_rads*amp(params[0],t)*trig_fn(phase(params[1],t)+hz_to_rads*freq*t))self.func=callable_amp_and_phasereturnifself.amp_is_callableandself.freq_is_callable:defcallable_amp_and_freq(params,t):return(hz_to_rads*amp(params[0],t)*trig_fn(phase+hz_to_rads*freq(params[1],t)*t))self.func=callable_amp_and_freqreturnifself.phase_is_callableandself.freq_is_callable:defcallable_phase_and_freq(params,t):return(hz_to_rads*amp*trig_fn(phase(params[0],t)+hz_to_rads*freq(params[1],t)*t))self.func=callable_phase_and_freqreturn# 1 out of 3 callableifself.amp_is_callable:defcallable_amp(params,t):returnhz_to_rads*amp(params[0],t)*trig_fn(phase+hz_to_rads*freq*t)self.func=callable_ampreturnifself.phase_is_callable:defcallable_phase(params,t):returnhz_to_rads*amp*trig_fn(phase(params[0],t)+hz_to_rads*freq*t)self.func=callable_phasereturnifself.freq_is_callable:defcallable_freq(params,t):returnhz_to_rads*amp*trig_fn(phase+hz_to_rads*freq(params[0],t)*t)self.func=callable_freqreturn# 0 out of 3 callable# (the remaining coeff is still callable due to explicit time dependence)defno_callable(_,t):returnhz_to_rads*amp*trig_fn(phase+hz_to_rads*freq*t)self.func=no_callabledef__call__(self,params,t):returnself.func(params,t)def_reorder_AmpPhaseFreq(params,coeffs_parametrized):"""Takes `params`, and reorganizes it based on whether the Hamiltonian has callable phase and/or callable amplitude and/or callable freq. Consolidates amplitude, phase and freq parameters if they are callable, and duplicates parameters since they will be passed to two operators in the Hamiltonian"""reordered_params=[]coeff_idx=0params_idx=0fori,coeffinenumerate(coeffs_parametrized):ifi==coeff_idx:ifisinstance(coeff,AmplitudeAndPhaseAndFreq):is_callables=[coeff.phase_is_callable,coeff.amp_is_callable,coeff.freq_is_callable,]num_callables=sum(is_callables)# package parameters according to how many coeffs are callablereordered_params.extend([params[params_idx:params_idx+num_callables]])coeff_idx+=1params_idx+=num_callableselse:reordered_params.append(params[params_idx])coeff_idx+=1params_idx+=1returnreordered_params