Source code for pennylane.qchem.hamiltonian

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains the functions needed for computing the molecular Hamiltonian.
"""
# pylint: disable= too-many-branches, too-many-arguments, too-many-locals, too-many-nested-blocks
import pennylane as qml

from .hartree_fock import nuclear_energy, scf
from .observable_hf import fermionic_observable, qubit_observable


[docs]def electron_integrals(mol, core=None, active=None): r"""Return a function that computes the one- and two-electron integrals in the molecular orbital basis. The one- and two-electron integrals are required to construct a molecular Hamiltonian in the second-quantized form .. math:: H = \sum_{pq} h_{pq} c_p^{\dagger} c_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_s, where :math:`c^{\dagger}` and :math:`c` are the creation and annihilation operators, respectively, and :math:`h_{pq}` and :math:`h_{pqrs}` are the one- and two-electron integrals. These integrals can be computed by integrating over molecular orbitals :math:`\phi` as .. math:: h_{pq} = \int \phi_p(r)^* \left ( -\frac{\nabla_r^2}{2} - \sum_i \frac{Z_i}{|r-R_i|} \right ) \phi_q(r) dr, and .. math:: h_{pqrs} = \int \frac{\phi_p(r_1)^* \phi_q(r_2)^* \phi_r(r_2) \phi_s(r_1)}{|r_1 - r_2|} dr_1 dr_2. The molecular orbitals are constructed as a linear combination of atomic orbitals as .. math:: \phi_i = \sum_{\nu}c_{\nu}^i \chi_{\nu}. The one- and two-electron integrals can be written in the molecular orbital basis as .. math:: h_{pq} = \sum_{\mu \nu} C_{p \mu} h_{\mu \nu} C_{\nu q}, and .. math:: h_{pqrs} = \sum_{\mu \nu \rho \sigma} C_{p \mu} C_{q \nu} h_{\mu \nu \rho \sigma} C_{\rho r} C_{\sigma s}. The :math:`h_{\mu \nu}` and :math:`h_{\mu \nu \rho \sigma}` terms refer to the elements of the core matrix and the electron repulsion tensor, respectively, and :math:`C` is the molecular orbital expansion coefficient matrix. Args: mol (~qchem.molecule.Molecule): the molecule object core (list[int]): indices of the core orbitals active (list[int]): indices of the active orbitals Returns: function: function that computes the core constant and the one- and two-electron integrals **Example** >>> symbols = ['H', 'H'] >>> geometry = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]], requires_grad = False) >>> alpha = np.array([[3.42525091, 0.62391373, 0.1688554], >>> [3.42525091, 0.62391373, 0.1688554]], requires_grad=True) >>> mol = qml.qchem.Molecule(symbols, geometry, alpha=alpha) >>> args = [alpha] >>> electron_integrals(mol)(*args) (1.0, array([[-1.3902192695e+00, 0.0000000000e+00], [-4.4408920985e-16, -2.9165331336e-01]]), array([[[[ 7.1443907755e-01, -2.7755575616e-17], [ 5.5511151231e-17, 1.7024144301e-01]], [[ 5.5511151231e-17, 1.7024144301e-01], [ 7.0185315353e-01, 6.6613381478e-16]]], [[[-1.3877787808e-16, 7.0185315353e-01], [ 1.7024144301e-01, 2.2204460493e-16]], [[ 1.7024144301e-01, -4.4408920985e-16], [ 6.6613381478e-16, 7.3883668974e-01]]]])) """ def _electron_integrals(*args): r"""Compute the one- and two-electron integrals in the molecular orbital basis. Args: *args (array[array[float]]): initial values of the differentiable parameters Returns: tuple[array[float]]: 1D tuple containing core constant, one- and two-electron integrals """ _, coeffs, _, h_core, repulsion_tensor = scf(mol)(*args) one = qml.math.einsum("qr,rs,st->qt", coeffs.T, h_core, coeffs) two = qml.math.swapaxes( qml.math.einsum( "ab,cd,bdeg,ef,gh->acfh", coeffs.T, coeffs.T, repulsion_tensor, coeffs, coeffs ), 1, 3, ) core_constant = nuclear_energy(mol.nuclear_charges, mol.coordinates)(*args) if core is None and active is None: return core_constant, one, two for i in core: core_constant = core_constant + 2 * one[i][i] for j in core: core_constant = core_constant + 2 * two[i][j][j][i] - two[i][j][i][j] for p in active: for q in active: for i in core: o = qml.math.zeros(one.shape) o[p, q] = 1.0 one = one + (2 * two[i][p][q][i] - two[i][p][i][q]) * o one = one[qml.math.ix_(active, active)] two = two[qml.math.ix_(active, active, active, active)] return core_constant, one, two return _electron_integrals
[docs]def fermionic_hamiltonian(mol, cutoff=1.0e-12, core=None, active=None): r"""Return a function that computes the fermionic Hamiltonian. Args: mol (~qchem.molecule.Molecule): the molecule object cutoff (float): cutoff value for discarding the negligible electronic integrals core (list[int]): indices of the core orbitals active (list[int]): indices of the active orbitals Returns: function: function that computes the fermionic hamiltonian **Example** >>> symbols = ['H', 'H'] >>> geometry = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]], requires_grad = False) >>> alpha = np.array([[3.42525091, 0.62391373, 0.1688554], >>> [3.42525091, 0.62391373, 0.1688554]], requires_grad=True) >>> mol = qml.qchem.Molecule(symbols, geometry, alpha=alpha) >>> args = [alpha] >>> h = fermionic_hamiltonian(mol)(*args) """ def _fermionic_hamiltonian(*args): r"""Compute the fermionic hamiltonian. Args: *args (array[array[float]]): initial values of the differentiable parameters Returns: FermiSentence: fermionic Hamiltonian """ core_constant, one, two = electron_integrals(mol, core, active)(*args) return fermionic_observable(core_constant, one, two, cutoff) return _fermionic_hamiltonian
[docs]def diff_hamiltonian(mol, cutoff=1.0e-12, core=None, active=None): r"""Return a function that computes the qubit Hamiltonian. Args: mol (~qchem.molecule.Molecule): the molecule object cutoff (float): cutoff value for discarding the negligible electronic integrals core (list[int]): indices of the core orbitals active (list[int]): indices of the active orbitals Returns: function: function that computes the qubit hamiltonian **Example** >>> symbols = ['H', 'H'] >>> geometry = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]], requires_grad = False) >>> alpha = np.array([[3.42525091, 0.62391373, 0.1688554], >>> [3.42525091, 0.62391373, 0.1688554]], requires_grad=True) >>> mol = qml.qchem.Molecule(symbols, geometry, alpha=alpha) >>> args = [alpha] >>> h = diff_hamiltonian(mol)(*args) >>> h.coeffs array([ 0.29817879+0.j, 0.20813365+0.j, 0.20813365+0.j, 0.17860977+0.j, 0.04256036+0.j, -0.04256036+0.j, -0.04256036+0.j, 0.04256036+0.j, -0.34724873+0.j, 0.13290293+0.j, -0.34724873+0.j, 0.17546329+0.j, 0.17546329+0.j, 0.13290293+0.j, 0.18470917+0.j]) """ def _molecular_hamiltonian(*args): r"""Compute the qubit hamiltonian. Args: *args (array[array[float]]): initial values of the differentiable parameters Returns: Hamiltonian: the qubit Hamiltonian """ h_ferm = fermionic_hamiltonian(mol, cutoff, core, active)(*args) return qubit_observable(h_ferm) return _molecular_hamiltonian