Source code for pennylane.transforms.optimization.merge_amplitude_embedding
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transform for merging AmplitudeEmbedding gates in a quantum circuit."""
import pennylane as qml
from pennylane import AmplitudeEmbedding
from pennylane.math import flatten, reshape
from pennylane.queuing import QueuingManager
from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.transforms import transform
from pennylane.typing import PostprocessingFn
[docs]@transform
def merge_amplitude_embedding(tape: QuantumScript) -> tuple[QuantumScriptBatch, PostprocessingFn]:
r"""Quantum function transform to combine amplitude embedding templates that act on different qubits.
Args:
tape (QNode or QuantumTape or Callable): A quantum circuit.
Returns:
qnode (QNode) or quantum function (Callable) or tuple[List[.QuantumTape], function]: The transformed circuit as described in :func:`qml.transform <pennylane.transform>`.
**Example**
>>> dev = qml.device('default.qubit', wires=4)
You can apply the transform directly on :class:`QNode`:
.. code-block:: python
@qml.transforms.merge_amplitude_embedding
@qml.qnode(device=dev)
def circuit():
qml.CNOT(wires = [0,1])
qml.AmplitudeEmbedding([0,1], wires = 2)
qml.AmplitudeEmbedding([0,1], wires = 3)
return qml.state()
>>> circuit()
[1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
.. details::
:title: Usage Details
You can also apply it on quantum function.
.. code-block:: python
def qfunc():
qml.CNOT(wires = [0,1])
qml.AmplitudeEmbedding([0,1], wires = 2)
qml.AmplitudeEmbedding([0,1], wires = 3)
return qml.state()
The circuit before compilation will not work because of using two amplitude embedding.
Using the transformation we can join the different amplitude embedding into a single one:
>>> optimized_qfunc = qml.transforms.merge_amplitude_embedding(qfunc)
>>> optimized_qnode = qml.QNode(optimized_qfunc, dev)
>>> print(qml.draw(optimized_qnode)())
0: ─╭●──────────────────────┤ State
1: ─╰X──────────────────────┤ State
2: ─╭AmplitudeEmbedding(M0)─┤ State
3: ─╰AmplitudeEmbedding(M0)─┤ State
M0 =
[0.+0.j 0.+0.j 0.+0.j 1.+0.j]
"""
new_operations = []
visited_wires = set()
input_wires, input_vectors, input_batch_size = [], [], []
for current_gate in tape.operations:
wires_set = set(current_gate.wires)
# Check if the current gate is an AmplitudeEmbedding.
if not isinstance(current_gate, AmplitudeEmbedding):
new_operations.append(current_gate)
visited_wires = visited_wires.union(wires_set)
continue
# Check the qubits have not been used.
if len(visited_wires.intersection(wires_set)) > 0:
raise qml.DeviceError(
f"Operation {current_gate.name} cannot be used after other Operation applied in the same qubit "
)
input_wires.append(current_gate.wires)
input_vectors.append(current_gate.parameters[0])
input_batch_size.append(current_gate.batch_size)
visited_wires = visited_wires.union(wires_set)
if len(input_wires) > 0:
final_wires = input_wires[0]
final_vector = input_vectors[0]
final_batch_size = input_batch_size[0]
# Merge all parameters and qubits into a single one.
for w, v, b in zip(input_wires[1:], input_vectors[1:], input_batch_size[1:]):
final_vector = final_vector[..., :, None] * v[..., None, :]
final_batch_size = final_batch_size or b
final_wires = final_wires + w
if final_batch_size:
final_vector = reshape(final_vector, (final_batch_size, -1))
else:
final_vector = flatten(final_vector)
with QueuingManager.stop_recording():
new_operations.insert(0, AmplitudeEmbedding(final_vector, wires=final_wires))
new_tape = tape.copy(operations=new_operations)
def null_postprocessing(results):
"""A postprocesing function returned by a transform that only converts the batch of results
into a result for a single ``QuantumTape``.
"""
return results[0]
return [new_tape], null_postprocessing
_modules/pennylane/transforms/optimization/merge_amplitude_embedding
Download Python script
Download Notebook
View on GitHub