Source code for pennylane.transforms.optimization.merge_amplitude_embedding
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.# Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at# http://www.apache.org/licenses/LICENSE-2.0# Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License."""Transform for merging AmplitudeEmbedding gates in a quantum circuit."""importpennylaneasqmlfrompennylaneimportAmplitudeEmbeddingfrompennylane.mathimportflatten,reshapefrompennylane.queuingimportQueuingManagerfrompennylane.tapeimportQuantumScript,QuantumScriptBatchfrompennylane.transformsimporttransformfrompennylane.typingimportPostprocessingFn
[docs]@transformdefmerge_amplitude_embedding(tape:QuantumScript)->tuple[QuantumScriptBatch,PostprocessingFn]:r"""Quantum function transform to combine amplitude embedding templates that act on different qubits. Args: tape (QNode or QuantumTape or Callable): A quantum circuit. Returns: qnode (QNode) or quantum function (Callable) or tuple[List[.QuantumTape], function]: The transformed circuit as described in :func:`qml.transform <pennylane.transform>`. **Example** >>> dev = qml.device('default.qubit', wires=4) You can apply the transform directly on :class:`QNode`: .. code-block:: python @qml.transforms.merge_amplitude_embedding @qml.qnode(device=dev) def circuit(): qml.CNOT(wires = [0,1]) qml.AmplitudeEmbedding([0,1], wires = 2) qml.AmplitudeEmbedding([0,1], wires = 3) return qml.state() >>> circuit() [1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] .. details:: :title: Usage Details You can also apply it on quantum function. .. code-block:: python def qfunc(): qml.CNOT(wires = [0,1]) qml.AmplitudeEmbedding([0,1], wires = 2) qml.AmplitudeEmbedding([0,1], wires = 3) return qml.state() The circuit before compilation will not work because of using two amplitude embedding. Using the transformation we can join the different amplitude embedding into a single one: >>> optimized_qfunc = qml.transforms.merge_amplitude_embedding(qfunc) >>> optimized_qnode = qml.QNode(optimized_qfunc, dev) >>> print(qml.draw(optimized_qnode)()) 0: ─╭●──────────────────────┤ State 1: ─╰X──────────────────────┤ State 2: ─╭AmplitudeEmbedding(M0)─┤ State 3: ─╰AmplitudeEmbedding(M0)─┤ State M0 = [0.+0.j 0.+0.j 0.+0.j 1.+0.j] """new_operations=[]visited_wires=set()input_wires,input_vectors,input_batch_size=[],[],[]forcurrent_gateintape.operations:wires_set=set(current_gate.wires)# Check if the current gate is an AmplitudeEmbedding.ifnotisinstance(current_gate,AmplitudeEmbedding):new_operations.append(current_gate)visited_wires=visited_wires.union(wires_set)continue# Check the qubits have not been used.iflen(visited_wires.intersection(wires_set))>0:raiseqml.DeviceError(f"Operation {current_gate.name} cannot be used after other Operation applied in the same qubit ")input_wires.append(current_gate.wires)input_vectors.append(current_gate.parameters[0])input_batch_size.append(current_gate.batch_size)visited_wires=visited_wires.union(wires_set)iflen(input_wires)>0:final_wires=input_wires[0]final_vector=input_vectors[0]final_batch_size=input_batch_size[0]# Merge all parameters and qubits into a single one.forw,v,binzip(input_wires[1:],input_vectors[1:],input_batch_size[1:]):final_vector=final_vector[...,:,None]*v[...,None,:]final_batch_size=final_batch_sizeorbfinal_wires=final_wires+wiffinal_batch_size:final_vector=reshape(final_vector,(final_batch_size,-1))else:final_vector=flatten(final_vector)withQueuingManager.stop_recording():new_operations.insert(0,AmplitudeEmbedding(final_vector,wires=final_wires))new_tape=tape.copy(operations=new_operations)defnull_postprocessing(results):"""A postprocesing function returned by a transform that only converts the batch of results into a result for a single ``QuantumTape``. """returnresults[0]return[new_tape],null_postprocessing