Source code for pennylane.transforms.optimization.merge_amplitude_embedding
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transform for merging AmplitudeEmbedding gates in a quantum circuit."""
from typing import Sequence, Callable
from pennylane.transforms import transform
from pennylane.tape import QuantumTape
from pennylane import AmplitudeEmbedding
from pennylane._device import DeviceError
from pennylane.math import flatten, reshape
[docs]@transform
def merge_amplitude_embedding(tape: QuantumTape) -> (Sequence[QuantumTape], Callable):
r"""Quantum function transform to combine amplitude embedding templates that act on different qubits.
Args:
tape (QNode or QuantumTape or Callable): A quantum circuit.
Returns:
qnode (QNode) or quantum function (Callable) or tuple[List[.QuantumTape], function]: The transformed circuit as described in :func:`qml.transform <pennylane.transform>`.
**Example**
>>> dev = qml.device('default.qubit', wires=4)
You can apply the transform directly on :class:`QNode`:
.. code-block:: python
@qml.transforms.merge_amplitude_embedding
@qml.qnode(device=dev)
def circuit():
qml.CNOT(wires = [0,1])
qml.AmplitudeEmbedding([0,1], wires = 2)
qml.AmplitudeEmbedding([0,1], wires = 3)
return qml.state()
>>> circuit()
[1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
.. details::
:title: Usage Details
You can also apply it on quantum function.
.. code-block:: python
def qfunc():
qml.CNOT(wires = [0,1])
qml.AmplitudeEmbedding([0,1], wires = 2)
qml.AmplitudeEmbedding([0,1], wires = 3)
return qml.state()
The circuit before compilation will not work because of using two amplitude embedding.
Using the transformation we can join the different amplitude embedding into a single one:
>>> optimized_qfunc = qml.transforms.merge_amplitude_embedding(qfunc)
>>> optimized_qnode = qml.QNode(optimized_qfunc, dev)
>>> print(qml.draw(optimized_qnode)())
0: ─╭●──────────────────────┤ State
1: ─╰X──────────────────────┤ State
2: ─╭AmplitudeEmbedding(M0)─┤ State
3: ─╰AmplitudeEmbedding(M0)─┤ State
M0 =
[0.+0.j 0.+0.j 0.+0.j 1.+0.j]
"""
# Make a working copy of the list to traverse
list_copy = tape.operations.copy()
not_amplitude_embedding = []
visited_wires = set()
input_wires, input_vectors, input_batch_size = [], [], []
while len(list_copy) > 0:
current_gate = list_copy[0]
wires_set = set(current_gate.wires)
# Check if the current gate is an AmplitudeEmbedding.
if not isinstance(current_gate, AmplitudeEmbedding):
not_amplitude_embedding.append(current_gate)
list_copy.pop(0)
visited_wires = visited_wires.union(wires_set)
continue
# Check the qubits have not been used.
if len(visited_wires.intersection(wires_set)) > 0:
raise DeviceError(
f"Operation {current_gate.name} cannot be used after other Operation applied in the same qubit "
)
input_wires.append(current_gate.wires)
input_vectors.append(current_gate.parameters[0])
input_batch_size.append(current_gate.batch_size)
list_copy.pop(0)
visited_wires = visited_wires.union(wires_set)
if len(input_wires) > 0:
final_wires = input_wires[0]
final_vector = input_vectors[0]
final_batch_size = input_batch_size[0]
# Merge all parameters and qubits into a single one.
for w, v, b in zip(input_wires[1:], input_vectors[1:], input_batch_size[1:]):
final_vector = final_vector[..., :, None] * v[..., None, :]
final_batch_size = final_batch_size or b
final_wires = final_wires + w
if final_batch_size:
final_vector = reshape(final_vector, (final_batch_size, -1))
else:
final_vector = flatten(final_vector)
AmplitudeEmbedding(final_vector, wires=final_wires)
new_operations = []
for gate in not_amplitude_embedding:
new_operations.append(gate)
new_tape = type(tape)(new_operations, tape.measurements, shots=tape.shots)
def null_postprocessing(results):
"""A postprocesing function returned by a transform that only converts the batch of results
into a result for a single ``QuantumTape``.
"""
return results[0]
return [new_tape], null_postprocessing
_modules/pennylane/transforms/optimization/merge_amplitude_embedding
Download Python script
Download Notebook
View on GitHub