qml.transforms.merge_amplitude_embedding¶
- merge_amplitude_embedding(tape)[source]¶
Quantum function transform to combine amplitude embedding templates that act on different qubits.
- Parameters
tape (QNode or QuantumTape or Callable) – A quantum circuit.
- Returns
The transformed circuit as described in
qml.transform
.- Return type
qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]
Example
>>> dev = qml.device('default.qubit', wires=4)
You can apply the transform directly on
QNode
:@qml.transforms.merge_amplitude_embedding @qml.qnode(device=dev) def circuit(): qml.CNOT(wires = [0,1]) qml.AmplitudeEmbedding([0,1], wires = 2) qml.AmplitudeEmbedding([0,1], wires = 3) return qml.state()
>>> circuit() [1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
Usage Details
You can also apply it on quantum function.
def qfunc(): qml.CNOT(wires = [0,1]) qml.AmplitudeEmbedding([0,1], wires = 2) qml.AmplitudeEmbedding([0,1], wires = 3) return qml.state()
The circuit before compilation will not work because of using two amplitude embedding.
Using the transformation we can join the different amplitude embedding into a single one:
>>> optimized_qfunc = qml.transforms.merge_amplitude_embedding(qfunc) >>> optimized_qnode = qml.QNode(optimized_qfunc, dev) >>> print(qml.draw(optimized_qnode)()) 0: ─╭●──────────────────────┤ State 1: ─╰X──────────────────────┤ State 2: ─╭AmplitudeEmbedding(M0)─┤ State 3: ─╰AmplitudeEmbedding(M0)─┤ State M0 = [0.+0.j 0.+0.j 0.+0.j 1.+0.j]
code/api/pennylane.transforms.merge_amplitude_embedding
Download Python script
Download Notebook
View on GitHub