qml.transforms.unitary_to_rot¶
- unitary_to_rot(tape)[source]¶
Quantum function transform to decomposes all instances of single-qubit and select instances of two-qubit
QubitUnitary
operations to parametrized single-qubit operations.Single-qubit gates will be converted to a sequence of Y and Z rotations in the form \(RZ(\omega) RY(\theta) RZ(\phi)\) that implements the original operation up to a global phase. Two-qubit gates will be decomposed according to the
pennylane.transforms.two_qubit_decomposition()
function.Warning
This transform is not fully differentiable for 2-qubit
QubitUnitary
operations. See usage details below.- Parameters
tape (QNode or QuantumTape or Callable) – A quantum circuit.
- Returns
The transformed circuit as described in
qml.transform
.- Return type
qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]
Example
Suppose we would like to apply the following unitary operation:
U = np.array([ [-0.17111489+0.58564875j, -0.69352236-0.38309524j], [ 0.25053735+0.75164238j, 0.60700543-0.06171855j] ])
The
unitary_to_rot
transform enables us to decompose such numerical operations while preserving differentiability.def qfunc(): qml.QubitUnitary(U, wires=0) return qml.expval(qml.Z(0))
The original circuit is:
>>> dev = qml.device('default.qubit', wires=1) >>> qnode = qml.QNode(qfunc, dev) >>> print(qml.draw(qnode)()) 0: ──U(M0)─┤ <Z> M0 = [[-0.17111489+0.58564875j -0.69352236-0.38309524j] [ 0.25053735+0.75164238j 0.60700543-0.06171855j]]
We can use the transform to decompose the gate:
>>> transformed_qfunc = unitary_to_rot(qfunc) >>> transformed_qnode = qml.QNode(transformed_qfunc, dev) >>> print(qml.draw(transformed_qnode)()) 0: ──RZ(-1.35)──RY(1.83)──RZ(-0.61)─┤ <Z>
Usage Details
This decomposition is not fully differentiable. We can differentiate with respect to input QNode parameters when they are not used to explicitly construct a \(4 \times 4\) unitary matrix being decomposed. So for example, the following will work:
U = scipy.stats.unitary_group.rvs(4) def circuit(angles): qml.QubitUnitary(U, wires=["a", "b"]) qml.RX(angles[0], wires="a") qml.RY(angles[1], wires="b") qml.CNOT(wires=["b", "a"]) return qml.expval(qml.Z("a")) dev = qml.device('default.qubit', wires=["a", "b"]) transformed_qfunc = qml.transforms.unitary_to_rot(circuit) transformed_qnode = qml.QNode(transformed_qfunc, dev)
>>> g = qml.grad(transformed_qnode) >>> params = np.array([0.2, 0.3], requires_grad=True) >>> g(params) array([ 0.00296633, -0.29392145])
However, the following example will not be differentiable:
def circuit(angles): z = angles[0] x = angles[1] Z_mat = np.array([[np.exp(-1j * z / 2), 0.0], [0.0, np.exp(1j * z / 2)]]) c = np.cos(x / 2) s = np.sin(x / 2) * 1j X_mat = np.array([[c, -s], [-s, c]]) U = np.kron(Z_mat, X_mat) qml.Hadamard(wires="a") # U depends on the input parameters qml.QubitUnitary(U, wires=["a", "b"]) qml.CNOT(wires=["b", "a"]) return qml.expval(qml.X("a"))