Source code for pennylane.transforms.unitary_to_rot

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A transform for decomposing arbitrary single-qubit QubitUnitary gates into elementary gates.
"""

import pennylane as qml
from pennylane.ops.op_math.decompositions import one_qubit_decomposition, two_qubit_decomposition
from pennylane.queuing import QueuingManager
from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.transforms import transform
from pennylane.typing import PostprocessingFn


[docs]@transform def unitary_to_rot(tape: QuantumScript) -> tuple[QuantumScriptBatch, PostprocessingFn]: r"""Quantum function transform to decomposes all instances of single-qubit and select instances of two-qubit :class:`~.QubitUnitary` operations to parametrized single-qubit operations. Single-qubit gates will be converted to a sequence of Y and Z rotations in the form :math:`RZ(\omega) RY(\theta) RZ(\phi)` that implements the original operation up to a global phase. Two-qubit gates will be decomposed according to the :func:`pennylane.transforms.two_qubit_decomposition` function. .. warning:: This transform is not fully differentiable for 2-qubit ``QubitUnitary`` operations. See usage details below. Args: tape (QNode or QuantumTape or Callable): A quantum circuit. Returns: qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]: The transformed circuit as described in :func:`qml.transform <pennylane.transform>`. **Example** Suppose we would like to apply the following unitary operation: .. code-block:: python3 U = np.array([ [-0.17111489+0.58564875j, -0.69352236-0.38309524j], [ 0.25053735+0.75164238j, 0.60700543-0.06171855j] ]) The ``unitary_to_rot`` transform enables us to decompose such numerical operations while preserving differentiability. .. code-block:: python3 def qfunc(): qml.QubitUnitary(U, wires=0) return qml.expval(qml.Z(0)) The original circuit is: >>> dev = qml.device('default.qubit', wires=1) >>> qnode = qml.QNode(qfunc, dev) >>> print(qml.draw(qnode)()) 0: ──U(M0)─┤ <Z> M0 = [[-0.17111489+0.58564875j -0.69352236-0.38309524j] [ 0.25053735+0.75164238j 0.60700543-0.06171855j]] We can use the transform to decompose the gate: >>> transformed_qfunc = unitary_to_rot(qfunc) >>> transformed_qnode = qml.QNode(transformed_qfunc, dev) >>> print(qml.draw(transformed_qnode)()) 0: ──RZ(-1.35)──RY(1.83)──RZ(-0.61)─┤ <Z> .. details:: :title: Usage Details This decomposition is not fully differentiable. We **can** differentiate with respect to input QNode parameters when they are not used to explicitly construct a :math:`4 \times 4` unitary matrix being decomposed. So for example, the following will work: .. code-block:: python3 U = scipy.stats.unitary_group.rvs(4) def circuit(angles): qml.QubitUnitary(U, wires=["a", "b"]) qml.RX(angles[0], wires="a") qml.RY(angles[1], wires="b") qml.CNOT(wires=["b", "a"]) return qml.expval(qml.Z("a")) dev = qml.device('default.qubit', wires=["a", "b"]) transformed_qfunc = qml.transforms.unitary_to_rot(circuit) transformed_qnode = qml.QNode(transformed_qfunc, dev) >>> g = qml.grad(transformed_qnode) >>> params = np.array([0.2, 0.3], requires_grad=True) >>> g(params) array([ 0.00296633, -0.29392145]) However, the following example will **not** be differentiable: .. code-block:: python3 def circuit(angles): z = angles[0] x = angles[1] Z_mat = np.array([[np.exp(-1j * z / 2), 0.0], [0.0, np.exp(1j * z / 2)]]) c = np.cos(x / 2) s = np.sin(x / 2) * 1j X_mat = np.array([[c, -s], [-s, c]]) U = np.kron(Z_mat, X_mat) qml.Hadamard(wires="a") # U depends on the input parameters qml.QubitUnitary(U, wires=["a", "b"]) qml.CNOT(wires=["b", "a"]) return qml.expval(qml.X("a")) """ operations = [] for op in tape.operations: if isinstance(op, qml.QubitUnitary): # Single-qubit unitary operations if qml.math.shape(op.parameters[0]) == (2, 2): with QueuingManager.stop_recording(): operations.extend(one_qubit_decomposition(op.parameters[0], op.wires[0])) # Two-qubit unitary operations elif qml.math.shape(op.parameters[0]) == (4, 4): with QueuingManager.stop_recording(): operations.extend(two_qubit_decomposition(op.parameters[0], op.wires)) else: operations.append(op) else: operations.append(op) new_tape = tape.copy(operations=operations) def null_postprocessing(results): """A postprocesing function returned by a transform that only converts the batch of results into a result for a single ``QuantumTape``. """ return results[0] return [new_tape], null_postprocessing