Source code for pennylane.transforms.unitary_to_rot
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A transform for decomposing arbitrary single-qubit QubitUnitary gates into elementary gates.
"""
import pennylane as qml
from pennylane.ops.op_math.decompositions import one_qubit_decomposition, two_qubit_decomposition
from pennylane.queuing import QueuingManager
from pennylane.tape import QuantumScript, QuantumScriptBatch
from pennylane.transforms import transform
from pennylane.typing import PostprocessingFn
[docs]@transform
def unitary_to_rot(tape: QuantumScript) -> tuple[QuantumScriptBatch, PostprocessingFn]:
r"""Quantum function transform to decomposes all instances of single-qubit and
select instances of two-qubit :class:`~.QubitUnitary` operations to
parametrized single-qubit operations.
Single-qubit gates will be converted to a sequence of Y and Z rotations in the form
:math:`RZ(\omega) RY(\theta) RZ(\phi)` that implements the original operation up
to a global phase. Two-qubit gates will be decomposed according to the
:func:`pennylane.transforms.two_qubit_decomposition` function.
.. warning::
This transform is not fully differentiable for 2-qubit ``QubitUnitary``
operations. See usage details below.
Args:
tape (QNode or QuantumTape or Callable): A quantum circuit.
Returns:
qnode (QNode) or quantum function (Callable) or tuple[List[QuantumTape], function]: The transformed circuit as described in :func:`qml.transform <pennylane.transform>`.
**Example**
Suppose we would like to apply the following unitary operation:
.. code-block:: python3
U = np.array([
[-0.17111489+0.58564875j, -0.69352236-0.38309524j],
[ 0.25053735+0.75164238j, 0.60700543-0.06171855j]
])
The ``unitary_to_rot`` transform enables us to decompose such numerical
operations while preserving differentiability.
.. code-block:: python3
def qfunc():
qml.QubitUnitary(U, wires=0)
return qml.expval(qml.Z(0))
The original circuit is:
>>> dev = qml.device('default.qubit', wires=1)
>>> qnode = qml.QNode(qfunc, dev)
>>> print(qml.draw(qnode)())
0: ──U(M0)─┤ <Z>
M0 =
[[-0.17111489+0.58564875j -0.69352236-0.38309524j]
[ 0.25053735+0.75164238j 0.60700543-0.06171855j]]
We can use the transform to decompose the gate:
>>> transformed_qfunc = unitary_to_rot(qfunc)
>>> transformed_qnode = qml.QNode(transformed_qfunc, dev)
>>> print(qml.draw(transformed_qnode)())
0: ──RZ(-1.35)──RY(1.83)──RZ(-0.61)─┤ <Z>
.. details::
:title: Usage Details
This decomposition is not fully differentiable. We **can** differentiate
with respect to input QNode parameters when they are not used to
explicitly construct a :math:`4 \times 4` unitary matrix being
decomposed. So for example, the following will work:
.. code-block:: python3
U = scipy.stats.unitary_group.rvs(4)
def circuit(angles):
qml.QubitUnitary(U, wires=["a", "b"])
qml.RX(angles[0], wires="a")
qml.RY(angles[1], wires="b")
qml.CNOT(wires=["b", "a"])
return qml.expval(qml.Z("a"))
dev = qml.device('default.qubit', wires=["a", "b"])
transformed_qfunc = qml.transforms.unitary_to_rot(circuit)
transformed_qnode = qml.QNode(transformed_qfunc, dev)
>>> g = qml.grad(transformed_qnode)
>>> params = np.array([0.2, 0.3], requires_grad=True)
>>> g(params)
array([ 0.00296633, -0.29392145])
However, the following example will **not** be differentiable:
.. code-block:: python3
def circuit(angles):
z = angles[0]
x = angles[1]
Z_mat = np.array([[np.exp(-1j * z / 2), 0.0], [0.0, np.exp(1j * z / 2)]])
c = np.cos(x / 2)
s = np.sin(x / 2) * 1j
X_mat = np.array([[c, -s], [-s, c]])
U = np.kron(Z_mat, X_mat)
qml.Hadamard(wires="a")
# U depends on the input parameters
qml.QubitUnitary(U, wires=["a", "b"])
qml.CNOT(wires=["b", "a"])
return qml.expval(qml.X("a"))
"""
operations = []
for op in tape.operations:
if isinstance(op, qml.QubitUnitary):
# Single-qubit unitary operations
if qml.math.shape(op.parameters[0]) == (2, 2):
with QueuingManager.stop_recording():
operations.extend(one_qubit_decomposition(op.parameters[0], op.wires[0]))
# Two-qubit unitary operations
elif qml.math.shape(op.parameters[0]) == (4, 4):
with QueuingManager.stop_recording():
operations.extend(two_qubit_decomposition(op.parameters[0], op.wires))
else:
operations.append(op)
else:
operations.append(op)
new_tape = type(tape)(operations, measurements=tape.measurements, shots=tape.shots)
def null_postprocessing(results):
"""A postprocesing function returned by a transform that only converts the batch of results
into a result for a single ``QuantumTape``.
"""
return results[0]
return [new_tape], null_postprocessing
_modules/pennylane/transforms/unitary_to_rot
Download Python script
Download Notebook
View on GitHub