Source code for pennylane.math.matrix_manipulation
# Copyright 2018-2022 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This module contains methods to expand the matrix representation of an operator
to a higher hilbert space with re-ordered wires."""
import itertools
import numbers
from collections.abc import Callable, Generator, Iterable
from functools import reduce
import numpy as np
from scipy.sparse import csr_matrix, eye, kron
import pennylane as qml
from pennylane.wires import Wires
[docs]def expand_matrix(mat, wires, wire_order=None, sparse_format="csr"):
# pylint: disable=too-many-branches
"""Re-express a matrix acting on a subspace defined by a set of wire labels
according to a global wire order.
Args:
mat (tensor_like): matrix to expand
wires (Iterable): wires determining the subspace that ``mat`` acts on; a matrix of
dimension :math:`D^n` acts on a subspace of :math:`n` wires, where :math:`D` is the qudit dimension (2).
wire_order (Iterable): global wire order, which has to contain all wire labels in ``wires``, but can also
contain additional labels
sparse_format (str): if ``mat`` is a SciPy sparse matrix then this is the string representing the
preferred scipy sparse matrix format to cast the expanded matrix too
Returns:
tensor_like: expanded matrix
**Example**
If the wire order is ``None`` or identical to ``wires``, the original matrix gets returned:
>>> matrix = np.array([[1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... [13, 14, 15, 16]])
>>> print(expand_matrix(matrix, wires=[0, 2], wire_order=[0, 2]))
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]
[13 14 15 16]]
>>> print(expand_matrix(matrix, wires=[0, 2]))
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]
[13 14 15 16]]
If the wire order is a permutation of ``wires``, the entries of the matrix get permuted:
>>> print(expand_matrix(matrix, wires=[0, 2], wire_order=[2, 0]))
[[ 1 3 2 4]
[ 9 11 10 12]
[ 5 7 6 8]
[13 15 14 16]]
If the wire order contains wire labels not found in ``wires``, the matrix gets expanded:
>>> print(expand_matrix(matrix, wires=[0, 2], wire_order=[0, 1, 2]))
[[ 1 2 0 0 3 4 0 0]
[ 5 6 0 0 7 8 0 0]
[ 0 0 1 2 0 0 3 4]
[ 0 0 5 6 0 0 7 8]
[ 9 10 0 0 11 12 0 0]
[13 14 0 0 15 16 0 0]
[ 0 0 9 10 0 0 11 12]
[ 0 0 13 14 0 0 15 16]]
The method works with tensors from all autodifferentiation frameworks, for example:
>>> matrix_torch = torch.tensor([[1., 2.],
... [3., 4.]], requires_grad=True)
>>> res = expand_matrix(matrix_torch, wires=["b"], wire_order=["a", "b"])
>>> type(res)
torch.Tensor
>>> res.requires_grad
True
The method works with scipy sparse matrices, for example:
>>> from scipy import sparse
>>> mat = sparse.csr_matrix([[0, 1], [1, 0]])
>>> qml.math.expand_matrix(mat, wires=[1], wire_order=[0,1]).toarray()
array([[0., 1., 0., 0.],
[1., 0., 0., 0.],
[0., 0., 0., 1.],
[0., 0., 1., 0.]])
"""
wires = Wires(wires)
if wires:
float_dim = qml.math.shape(mat)[-1] ** (1 / (len(wires)))
qudit_dim = int(qml.math.round(float_dim))
else:
qudit_dim = 2 # if no wires, just assume qubit
if (wire_order is None) or (wire_order == wires):
return mat
if not wires and qml.math.shape(mat) == (qudit_dim, qudit_dim):
# global phase
wires = wire_order[0:1]
wires = list(wires)
wire_order = list(wire_order)
interface = qml.math.get_interface(mat)
shape = qml.math.shape(mat)
batch_dim = shape[0] if len(shape) == 3 else None
def eye_interface(dim):
if interface == "scipy":
return eye(qudit_dim**dim, format="coo")
return qml.math.cast_like(qml.math.eye(qudit_dim**dim, like=interface), mat)
def kron_interface(mat1, mat2):
if interface == "scipy":
res = kron(mat1, mat2, format="coo")
res.eliminate_zeros()
return res
if interface == "torch":
# these lines are to avoid a crash when the matrices are not contiguous in memory
mat1 = mat1.contiguous()
mat2 = mat2.contiguous()
return qml.math.kron(mat1, mat2, like=interface)
# get a subset of `wire_order` values that contain all wire labels inside `wires` argument
# e.g. wire_order = [0, 1, 2, 3, 4]; wires = [3, 0, 2]
# --> subset_wire_order = [0, 1, 2, 3]; expanded_wires = [3, 0, 2, 1]
wire_indices = [wire_order.index(wire) for wire in wires]
subset_wire_order = wire_order[min(wire_indices) : max(wire_indices) + 1]
wire_difference = list(set(subset_wire_order) - set(wires))
expanded_wires = wires + wire_difference
# expand the matrix if the wire subset is larger than the matrix wires
if wire_difference:
if batch_dim is not None:
batch_matrices = [
kron_interface(batch, eye_interface(len(wire_difference))) for batch in mat
]
mat = qml.math.stack(batch_matrices, like=interface)
else:
mat = kron_interface(mat, eye_interface(len(wire_difference)))
# permute matrix
if interface == "scipy":
mat = _permute_sparse_matrix(mat, expanded_wires, subset_wire_order)
else:
mat = _permute_dense_matrix(
mat, expanded_wires, subset_wire_order, batch_dim, qudit_dim=qudit_dim
)
# expand the matrix even further if needed
if len(expanded_wires) < len(wire_order):
mats = []
num_pre_identities = min(wire_indices)
if num_pre_identities > 0:
mats.append((eye_interface(num_pre_identities),))
mats.append(tuple(mat) if batch_dim else (mat,))
num_post_identities = len(wire_order) - max(wire_indices) - 1
if num_post_identities > 0:
mats.append((eye_interface(num_post_identities),))
# itertools.product will create a tuple of matrices for each different batch
mats_list = list(itertools.product(*mats))
# here we compute the kron product of each different tuple and stack them back together
expanded_batch_matrices = [reduce(kron_interface, mats) for mats in mats_list]
mat = (
qml.math.stack(expanded_batch_matrices, like=interface)
if len(expanded_batch_matrices) > 1
else expanded_batch_matrices[0]
)
return mat.asformat(sparse_format) if interface == "scipy" else mat
def _permute_sparse_matrix(matrix, wires, wire_order):
"""Permute the matrix to match the wires given in `wire_order`.
Args:
matrix (scipy.sparse.spmatrix): matrix to permute
wires (list): wires determining the subspace that base matrix acts on; a base matrix of
dimension :math:`2^n` acts on a subspace of :math:`n` wires
wire_order (list): global wire order, which has to contain all wire labels in ``wires``,
but can also contain additional labels
Returns:
scipy.sparse.spmatrix: permuted matrix
"""
U = _permutation_sparse_matrix(wires, wire_order)
if U is not None:
matrix = U.T @ matrix @ U
matrix.eliminate_zeros()
return matrix
def _permute_dense_matrix(matrix, wires, wire_order, batch_dim, qudit_dim: int = 2):
"""Permute the matrix to match the wires given in `wire_order`.
Args:
matrix (np.ndarray): matrix to permute
wires (list): wires determining the subspace that base matrix acts on; a base matrix of
dimension :math:`2^n` acts on a subspace of :math:`n` wires
wire_order (list): global wire order, which has to contain all wire labels in ``wires``,
but can also contain additional labels
batch_dim (int or None): Batch dimension. If ``None``, batching is ignored.
Returns:
np.ndarray: permuted matrix
"""
if wires == wire_order:
return matrix
# compute the permutations needed to match wire order
perm = [wires.index(wire) for wire in wire_order]
num_wires = len(wire_order)
perm += [p + num_wires for p in perm]
if batch_dim:
perm = [0] + [p + 1 for p in perm]
# reshape matrix to match wire values e.g. mat[0, 0, 0, 0] = <00|mat|00>
# with this reshape we can easily swap wires
shape = (
[batch_dim] + [qudit_dim] * (num_wires * 2) if batch_dim else [qudit_dim] * (num_wires * 2)
)
matrix = qml.math.reshape(matrix, shape)
# transpose matrix
matrix = qml.math.transpose(matrix, axes=perm)
# reshape back
shape = [batch_dim] + [qudit_dim**num_wires] * 2 if batch_dim else [qudit_dim**num_wires] * 2
return qml.math.reshape(matrix, shape)
def _sparse_swap_mat(qubit_i, qubit_j, n):
"""Helper function which generates the sparse matrix of SWAP
for qubits: i <--> j with final shape (2**n, 2**n)."""
def swap_qubits(index, i, j):
s = list(format(index, f"0{n}b")) # convert to binary
si, sj = s[i], s[j]
if si == sj:
return index
s[i], s[j] = sj, si # swap qubits
return int(f"0b{''.join(s)}", 2) # convert to int
data = [1] * (2**n)
index_i = list(range(2**n)) # bras (we don't change anything)
index_j = [
swap_qubits(idx, qubit_i, qubit_j) for idx in index_i
] # kets (we swap qubits i and j): |10> --> |01>
return csr_matrix((data, (index_i, index_j)))
def _permutation_sparse_matrix(expanded_wires: Iterable, wire_order: Iterable) -> csr_matrix:
"""Helper function which generates a permutation matrix in sparse format that swaps the wires
in ``expanded_wires`` to match the order given by the ``wire_order`` argument.
Args:
expanded_wires (Iterable): inital wires
wire_order (Iterable): final wires
Returns:
csr_matrix: permutation matrix in CSR sparse format
"""
n_total_wires = len(wire_order)
U = None
for i in range(n_total_wires):
if expanded_wires[i] != wire_order[i]:
if U is None:
U = eye(2**n_total_wires, format="csr")
j = expanded_wires.index(wire_order[i]) # location of correct wire
U = U @ _sparse_swap_mat(i, j, n_total_wires) # swap incorrect wire for correct wire
U.eliminate_zeros()
expanded_wires[i], expanded_wires[j] = expanded_wires[j], expanded_wires[i]
return U
def reduce_matrices(
mats_and_wires_gen: Generator[tuple[np.ndarray, Wires], None, None], reduce_func: Callable
) -> tuple[np.ndarray, Wires]:
"""Apply the given ``reduce_func`` cumulatively to the items of the ``mats_and_wires_gen``
generator, from left to right, so as to reduce the sequence to a tuple containing a single
matrix and the wires it acts on.
Args:
mats_and_wires_gen (Generator): generator of tuples containing the matrix and the wires of
each operator
reduce_func (callable): function used to reduce the sequence of operators
Returns:
Tuple[tensor, Wires]: a tuple containing the reduced matrix and the wires it acts on
"""
def expand_and_reduce(op1_tuple: tuple[np.ndarray, Wires], op2_tuple: tuple[np.ndarray, Wires]):
mat1, wires1 = op1_tuple
mat2, wires2 = op2_tuple
expanded_wires = wires1 + wires2
mat1 = expand_matrix(mat1, wires1, wire_order=expanded_wires)
mat2 = expand_matrix(mat2, wires2, wire_order=expanded_wires)
return reduce_func(mat1, mat2), expanded_wires
reduced_mat, final_wires = reduce(expand_and_reduce, mats_and_wires_gen)
return reduced_mat, final_wires
def get_batch_size(tensor, expected_shape, expected_size):
"""
Determine whether a tensor has an additional batch dimension for broadcasting,
compared to an expected_shape. Has support for abstract TF tensors.
Args:
tensor (TensorLike): A tensor to inspect for batching
expected_shape (Tuple[int]): The expected shape of the tensor if not batched
expected_size (int): The expected size of the tensor if not batched
Returns:
Optional[int]: The batch size of the tensor if there is one, otherwise None
"""
try:
size = qml.math.size(tensor)
ndim = qml.math.ndim(tensor)
if ndim > len(expected_shape) or size > expected_size:
return size // expected_size
except Exception as err: # pragma: no cover, pylint:disable=broad-except
# This except clause covers the usage of tf.function
if not qml.math.is_abstract(tensor):
raise err
return None
[docs]def expand_vector(vector, original_wires, expanded_wires):
r"""Expand a vector to more wires.
Args:
vector (array): :math:`2^n` vector where n = len(original_wires).
original_wires (Sequence[int]): original wires of vector
expanded_wires (Union[Sequence[int], int]): expanded wires of vector, can be shuffled
If a single int m is given, corresponds to list(range(m))
Returns:
array: :math:`2^m` vector where m = len(expanded_wires).
"""
if len(original_wires) == 0:
val = qml.math.squeeze(vector)
return val * qml.math.ones(2 ** len(expanded_wires))
if isinstance(expanded_wires, numbers.Integral):
expanded_wires = list(range(expanded_wires))
N = len(original_wires)
M = len(expanded_wires)
D = M - N
len_vector = qml.math.shape(vector)[0]
qudit_order = int(2 ** (np.log2(len_vector) / N))
if not set(expanded_wires).issuperset(original_wires):
raise ValueError("Invalid target subsystems provided in 'original_wires' argument.")
if qml.math.shape(vector) != (qudit_order**N,):
raise ValueError(f"Vector parameter must be of length {qudit_order}**len(original_wires)")
dims = [qudit_order] * N
tensor = qml.math.reshape(vector, dims)
if D > 0:
extra_dims = [qudit_order] * D
ones = qml.math.ones(qudit_order**D).reshape(extra_dims)
expanded_tensor = qml.math.tensordot(tensor, ones, axes=0)
else:
expanded_tensor = tensor
wire_indices = [expanded_wires.index(wire) for wire in original_wires]
wire_indices = np.array(wire_indices)
# Order tensor factors according to wires
original_indices = np.array(range(N))
expanded_tensor = qml.math.moveaxis(
expanded_tensor, tuple(original_indices), tuple(wire_indices)
)
return qml.math.reshape(expanded_tensor, (qudit_order**M,))
_modules/pennylane/math/matrix_manipulation
Download Python script
Download Notebook
View on GitHub