Source code for pennylane.ops.cv

# Copyright 2018-2021 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=too-many-arguments
r"""
This module contains the available built-in continuous-variable
quantum operations supported by PennyLane, as well as their conventions.

.. todo:: Add gradient recipes for Gaussian state preparations

.. todo::

   The gradient computation assumes all parameters are real (floats), some
   docstrings here allow complex or even array parameter values. This includes
   :class:`~.DisplacedSqueezedState` and :class:`~.CatState`.

   Possible solution: disallow such operations to depend on free parameters,
   this way they won't be differentiated.

.. note::

   For the Heisenberg matrix representation of CV operations, we use the ordering
   :math:`(\hat{\mathbb{1}}, \hat{x}, \hat{p})` for single modes
   and :math:`(\hat{\mathbb{1}}, \hat{x}_1, \hat{p}_2, \hat{x}_1,\hat{p}_2)` for two modes .
"""
# As the qubit based ``decomposition``, ``_matrix``, ``diagonalizing_gates``
# abstract methods are not defined in the CV case, disabling the related check
# pylint: disable=abstract-method
import math

import numpy as np
from scipy.linalg import block_diag

from pennylane import math as qml_math
from pennylane.operation import AnyWires, CVObservable, CVOperation

from .identity import I, Identity  # pylint: disable=unused-import
from .meta import Snapshot  # pylint: disable=unused-import

_two_term_shift_rule = [[0.5, 1, np.pi / 2], [-0.5, 1, -np.pi / 2]]


def _rotation(phi, bare=False):
    r"""Utility function, returns the Heisenberg transformation of a phase rotation gate.

    The transformation matrix returned is:

    .. math:: M = \begin{bmatrix}
        1 & 0 & 0\\
        0 & \cos\phi & -\sin\phi\\
        0 & \sin\phi & \cos\phi
        \end{bmatrix}

    Args:
        phi (float): rotation angle.
        bare (bool): if True, return a simple 2d rotation matrix

    Returns:
        array[float]: transformation matrix
    """
    c = math.cos(phi)
    s = math.sin(phi)
    temp = np.array([[c, -s], [s, c]])
    if bare:
        return temp
    return block_diag(1, temp)  # pylint: disable=no-member


[docs]class Rotation(CVOperation): r""" Phase space rotation. .. math:: R(\phi) = \exp\left(i \phi \ad \a\right)=\exp\left(i \frac{\phi}{2} \left(\frac{\x^2+ \p^2}{\hbar}-\I\right)\right). **Details:** * Number of wires: 1 * Number of parameters: 1 * Gradient recipe: :math:`\frac{d}{dr}f(R(r)) = \frac{1}{2} \left[f(R(\phi+\pi/2)) - f(R(\phi-\pi/2))\right]` where :math:`f` is an expectation value depending on :math:`R(r)`. * Heisenberg representation: .. math:: M = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\phi & -\sin\phi\\ 0 & \sin\phi & \cos\phi \end{bmatrix} Args: phi (float): the rotation angle wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = 1 grad_method = "A" grad_recipe = (_two_term_shift_rule,) def __init__(self, phi, wires, id=None): super().__init__(phi, wires=wires, id=id) @staticmethod def _heisenberg_rep(p): return _rotation(p[0])
[docs] def adjoint(self): return Rotation(-self.parameters[0], wires=self.wires)
[docs] def label(self, decimals=None, base_label=None, cache=None): return super().label(decimals=decimals, base_label=base_label or "R", cache=cache)
[docs]class Squeezing(CVOperation): r""" Phase space squeezing. .. math:: S(z) = \exp\left(\frac{1}{2}(z^* \a^2 -z {\a^\dagger}^2)\right). where :math:`z = r e^{i\phi}`. **Details:** * Number of wires: 1 * Number of parameters: 2 * Gradient recipe: :math:`\frac{d}{dr}f(S(r,\phi)) = \frac{1}{2\sinh s} \left[f(S(r+s, \phi)) - f(S(r-s, \phi))\right]`, where :math:`s` is an arbitrary real number (:math:`0.1` by default) and :math:`f` is an expectation value depending on :math:`S(r,\phi)`. * Heisenberg representation: .. math:: M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cosh r - \cos\phi \sinh r & -\sin\phi\sinh r \\ 0 & -\sin\phi\sinh r & \cosh r+\cos\phi\sinh r \end{bmatrix} Args: r (float): squeezing amount phi (float): squeezing phase angle :math:`\phi` wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 2 num_wires = 1 grad_method = "A" shift = 0.1 multiplier = 0.5 / math.sinh(shift) a = 1 grad_recipe = ([[multiplier, a, shift], [-multiplier, a, -shift]], _two_term_shift_rule) def __init__(self, r, phi, wires, id=None): super().__init__(r, phi, wires=wires, id=id) @staticmethod def _heisenberg_rep(p): R = _rotation(p[1] / 2) return R @ np.diag([1, math.exp(-p[0]), math.exp(p[0])]) @ R.T
[docs] def adjoint(self): r, phi = self.parameters new_phi = (phi + np.pi) % (2 * np.pi) return Squeezing(r, new_phi, wires=self.wires)
[docs] def label(self, decimals=None, base_label=None, cache=None): return super().label(decimals=decimals, base_label=base_label or "S", cache=cache)
[docs]class Displacement(CVOperation): r""" Phase space displacement. .. math:: D(a,\phi) = D(\alpha) = \exp(\alpha \ad -\alpha^* \a) = \exp\left(-i\sqrt{\frac{2}{\hbar}}(\re(\alpha) \hat{p} -\im(\alpha) \hat{x})\right). where :math:`\alpha = ae^{i\phi}` has magnitude :math:`a\geq 0` and phase :math:`\phi`. The result of applying a displacement to the vacuum is a coherent state :math:`D(\alpha)\ket{0} = \ket{\alpha}`. **Details:** * Number of wires: 1 * Number of parameters: 2 * Gradient recipe: :math:`\frac{d}{da}f(D(a,\phi)) = \frac{1}{2s} \left[f(D(a+s, \phi)) - f(D(a-s, \phi))\right]`, where :math:`s` is an arbitrary real number (:math:`0.1` by default) and :math:`f` is an expectation value depending on :math:`D(a,\phi)`. * Heisenberg representation: .. math:: M = \begin{bmatrix} 1 & 0 & 0 \\ 2a\cos\phi & 1 & 0 \\ 2a\sin\phi & 0 & 1\end{bmatrix} Args: a (float): displacement magnitude :math:`a=|\alpha|` phi (float): phase angle :math:`\phi` wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 2 num_wires = 1 grad_method = "A" shift = 0.1 multiplier = 0.5 / shift a = 1 grad_recipe = ([[multiplier, a, shift], [-multiplier, a, -shift]], _two_term_shift_rule) def __init__(self, a, phi, wires, id=None): super().__init__(a, phi, wires=wires, id=id) @staticmethod def _heisenberg_rep(p): c = math.cos(p[1]) s = math.sin(p[1]) scale = 2 # sqrt(2 * hbar) return np.array([[1, 0, 0], [scale * c * p[0], 1, 0], [scale * s * p[0], 0, 1]])
[docs] def adjoint(self): a, phi = self.parameters new_phi = (phi + np.pi) % (2 * np.pi) return Displacement(a, new_phi, wires=self.wires)
[docs] def label(self, decimals=None, base_label=None, cache=None): return super().label(decimals=decimals, base_label=base_label or "D", cache=cache)
[docs]class Beamsplitter(CVOperation): r""" Beamsplitter interaction. .. math:: B(\theta,\phi) = \exp\left(\theta (e^{i \phi} \a \hat{b}^\dagger -e^{-i \phi}\ad \hat{b}) \right). **Details:** * Number of wires: 2 * Number of parameters: 2 * Gradient recipe: :math:`\frac{d}{d \theta}f(B(\theta,\phi)) = \frac{1}{2} \left[f(B(\theta+\pi/2, \phi)) - f(B(\theta-\pi/2, \phi))\right]` where :math:`f` is an expectation value depending on :math:`B(\theta,\phi)`. * Heisenberg representation: .. math:: M = \begin{bmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & \cos\theta & 0 & -\cos\phi\sin\theta & -\sin\phi\sin\theta \\ 0 & 0 & \cos\theta & \sin\phi\sin\theta & -\cos\phi\sin\theta\\ 0 & \cos\phi\sin\theta & -\sin\phi\sin\theta & \cos\theta & 0\\ 0 & \sin\phi\sin\theta & \cos\phi\sin\theta & 0 & \cos\theta \end{bmatrix} Args: theta (float): Transmittivity angle :math:`\theta`. The transmission amplitude of the beamsplitter is :math:`t = \cos(\theta)`. The value :math:`\theta=\pi/4` gives the 50-50 beamsplitter. phi (float): Phase angle :math:`\phi`. The reflection amplitude of the beamsplitter is :math:`r = e^{i\phi}\sin(\theta)`. The value :math:`\phi = \pi/2` gives the symmetric beamsplitter. wires (Sequence[Any]): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 2 num_wires = 2 grad_method = "A" grad_recipe = (_two_term_shift_rule, _two_term_shift_rule) def __init__(self, theta, phi, wires, id=None): super().__init__(theta, phi, wires=wires, id=id) # For the beamsplitter, both parameters are rotation-like @staticmethod def _heisenberg_rep(p): R = _rotation(p[1], bare=True) c = math.cos(p[0]) s = math.sin(p[0]) U = c * np.eye(5) U[0, 0] = 1 U[1:3, 3:5] = -s * R.T U[3:5, 1:3] = s * R return U
[docs] def adjoint(self): theta, phi = self.parameters return Beamsplitter(-theta, phi, wires=self.wires)
[docs] def label(self, decimals=None, base_label=None, cache=None): return super().label(decimals=decimals, base_label=base_label or "BS", cache=cache)
[docs]class TwoModeSqueezing(CVOperation): r""" Phase space two-mode squeezing. .. math:: S_2(z) = \exp\left(z^* \a \hat{b} -z \ad \hat{b}^\dagger \right) = \exp\left(r (e^{-i\phi} \a\hat{b} -e^{i\phi} \ad \hat{b}^\dagger \right). where :math:`z = r e^{i\phi}`. **Details:** * Number of wires: 2 * Number of parameters: 2 * Gradient recipe: :math:`\frac{d}{dr}f(S_2(r,\phi)) = \frac{1}{2\sinh s} \left[f(S_2(r+s, \phi)) - f(S_2(r-s, \phi))\right]`, where :math:`s` is an arbitrary real number (:math:`0.1` by default) and :math:`f` is an expectation value depending on :math:`S_2(r,\phi)`. * Heisenberg representation: .. math:: M = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cosh r & 0 & \sinh r \cos \phi & \sinh r \sin \phi\\ 0 & 0 & \cosh r & \sinh r \sin \phi & -\sinh r \cos \phi\\ 0 & \sinh r \cos \phi & \sinh r \sin \phi & \cosh r & 0\\ 0 & \sinh r \sin \phi & -\sinh r \cos \phi & 0 & \cosh r \end{bmatrix} Args: r (float): squeezing amount phi (float): squeezing phase angle :math:`\phi` wires (Sequence[Any]): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 2 num_wires = 2 grad_method = "A" shift = 0.1 multiplier = 0.5 / math.sinh(shift) a = 1 grad_recipe = ([[multiplier, a, shift], [-multiplier, a, -shift]], _two_term_shift_rule) def __init__(self, r, phi, wires, id=None): super().__init__(r, phi, wires=wires, id=id) @staticmethod def _heisenberg_rep(p): R = _rotation(p[1], bare=True) S = math.sinh(p[0]) * np.diag([1, -1]) U = math.cosh(p[0]) * np.identity(5) U[0, 0] = 1 U[1:3, 3:5] = S @ R.T U[3:5, 1:3] = S @ R.T return U
[docs] def adjoint(self): r, phi = self.parameters new_phi = (phi + np.pi) % (2 * np.pi) return TwoModeSqueezing(r, new_phi, wires=self.wires)
[docs] def label(self, decimals=None, base_label=None, cache=None): return super().label(decimals=decimals, base_label=base_label or "S", cache=cache)
[docs]class QuadraticPhase(CVOperation): r""" Quadratic phase shift. .. math:: P(s) = e^{i \frac{s}{2} \hat{x}^2/\hbar}. **Details:** * Number of wires: 1 * Number of parameters: 1 * Gradient recipe: :math:`\frac{d}{ds}f(P(s)) = \frac{1}{2 a} \left[f(P(s+a)) - f(P(s-a))\right]`, where :math:`a` is an arbitrary real number (:math:`0.1` by default) and :math:`f` is an expectation value depending on :math:`P(s)`. * Heisenberg representation: .. math:: M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & s & 1 \\ \end{bmatrix} Args: s (float): parameter wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = 1 grad_method = "A" shift = 0.1 multiplier = 0.5 / shift a = 1 grad_recipe = ([[multiplier, a, shift], [-multiplier, a, -shift]],) def __init__(self, s, wires, id=None): super().__init__(s, wires=wires, id=id) @staticmethod def _heisenberg_rep(p): U = np.identity(3) U[2, 1] = p[0] return U
[docs] def label(self, decimals=None, base_label=None, cache=None): return super().label(decimals=decimals, base_label=base_label or "P", cache=cache)
[docs]class ControlledAddition(CVOperation): r""" Controlled addition operation. .. math:: \text{CX}(s) = \int dx \ket{x}\bra{x} \otimes D\left({\frac{1}{\sqrt{2\hbar}}}s x\right) = e^{-i s \: \hat{x} \otimes \hat{p}/\hbar}. **Details:** * Number of wires: 2 * Number of parameters: 1 * Gradient recipe: :math:`\frac{d}{ds}f(\text{CX}(s)) = \frac{1}{2 a} \left[f(\text{CX}(s+a)) - f(\text{CX}(s-a))\right]`, where :math:`a` is an arbitrary real number (:math:`0.1` by default) and :math:`f` is an expectation value depending on :math:`\text{CX}(s)`. * Heisenberg representation: .. math:: M = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -s \\ 0 & s & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} Args: s (float): addition multiplier wires (Sequence[Any]): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = 2 grad_method = "A" shift = 0.1 multiplier = 0.5 / shift a = 1 grad_recipe = ([[multiplier, a, shift], [-multiplier, a, -shift]],) def __init__(self, s, wires, id=None): super().__init__(s, wires=wires, id=id) @staticmethod def _heisenberg_rep(p): U = np.identity(5) U[2, 4] = -p[0] U[3, 1] = p[0] return U
[docs] def adjoint(self): return ControlledAddition(-self.parameters[0], wires=self.wires)
[docs] def label(self, decimals=None, base_label=None, cache=None): return super().label(decimals=decimals, base_label=base_label or "X", cache=cache)
[docs]class ControlledPhase(CVOperation): r""" Controlled phase operation. .. math:: \text{CZ}(s) = \iint dx dy \: e^{i sxy/\hbar} \ket{x,y}\bra{x,y} = e^{i s \: \hat{x} \otimes \hat{x}/\hbar}. **Details:** * Number of wires: 2 * Number of parameters: 1 * Gradient recipe: :math:`\frac{d}{ds}f(\text{CZ}(s)) = \frac{1}{2 a} \left[f(\text{CZ}(s+a)) - f(\text{CZ}(s-a))\right]`, where :math:`a` is an arbitrary real number (:math:`0.1` by default) and :math:`f` is an expectation value depending on :math:`\text{CZ}(s)`. * Heisenberg representation: .. math:: M = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & s & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & s & 0 & 0 & 1 \end{bmatrix} Args: s (float): phase shift multiplier wires (Sequence[Any]): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = 2 grad_method = "A" shift = 0.1 multiplier = 0.5 / shift a = 1 grad_recipe = ([[multiplier, a, shift], [-multiplier, a, -shift]],) def __init__(self, s, wires, id=None): super().__init__(s, wires=wires, id=id) @staticmethod def _heisenberg_rep(p): U = np.identity(5) U[2, 3] = p[0] U[4, 1] = p[0] return U
[docs] def adjoint(self): return ControlledPhase(-self.parameters[0], wires=self.wires)
[docs] def label(self, decimals=None, base_label=None, cache=None): return super().label(decimals=decimals, base_label=base_label or "Z", cache=cache)
[docs]class Kerr(CVOperation): r""" Kerr interaction. .. math:: K(\kappa) = e^{i \kappa \hat{n}^2}. **Details:** * Number of wires: 1 * Number of parameters: 1 * Gradient recipe: None (uses finite difference) Args: kappa (float): parameter wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = 1 grad_method = "F" def __init__(self, kappa, wires, id=None): super().__init__(kappa, wires=wires, id=id)
[docs] def adjoint(self): return Kerr(-self.parameters[0], wires=self.wires)
[docs]class CrossKerr(CVOperation): r""" Cross-Kerr interaction. .. math:: CK(\kappa) = e^{i \kappa \hat{n}_1\hat{n}_2}. **Details:** * Number of wires: 2 * Number of parameters: 1 * Gradient recipe: None (uses finite difference) Args: kappa (float): parameter wires (Sequence[Any]): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = 2 grad_method = "F" def __init__(self, kappa, wires, id=None): super().__init__(kappa, wires=wires, id=id)
[docs] def adjoint(self): return CrossKerr(-self.parameters[0], wires=self.wires)
[docs]class CubicPhase(CVOperation): r""" Cubic phase shift. .. math:: V(\gamma) = e^{i \frac{\gamma}{3} \hat{x}^3/\hbar}. **Details:** * Number of wires: 1 * Number of parameters: 1 * Gradient recipe: None (uses finite difference) Args: gamma (float): parameter wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = 1 grad_method = "F" def __init__(self, gamma, wires, id=None): super().__init__(gamma, wires=wires, id=id)
[docs] def adjoint(self): return CubicPhase(-self.parameters[0], wires=self.wires)
[docs] def label(self, decimals=None, base_label=None, cache=None): return super().label(decimals=decimals, base_label=base_label or "V", cache=cache)
[docs]class InterferometerUnitary(CVOperation): r""" A linear interferometer transforming the bosonic operators according to the unitary matrix :math:`U`. .. note:: This operation implements a **fixed** linear interferometer given a known unitary matrix. If you instead wish to parameterize the interferometer, and calculate the gradient/optimize with respect to these parameters, consider instead the :func:`pennylane.template.Interferometer` template, which constructs an interferometer from a combination of beamsplitters and rotation gates. **Details:** * Number of wires: Any * Number of parameters: 1 * Gradient recipe: None * Heisenberg representation: .. math:: M = \begin{bmatrix} 1 & 0\\ 0 & S\\ \end{bmatrix} where :math:`S` is the Gaussian symplectic transformation representing the interferometer. Args: U (array): A shape ``(len(wires), len(wires))`` complex unitary matrix wires (Sequence[Any] or Any): the wires the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = AnyWires grad_method = None grad_recipe = None def __init__(self, U, wires, id=None): super().__init__(U, wires=wires, id=id) @staticmethod def _heisenberg_rep(p): N = len(p[0]) A = p[0].real B = p[0].imag rows = np.arange(2 * N).reshape(2, -1).T.flatten() S = np.vstack([np.hstack([A, -B]), np.hstack([B, A])])[:, rows][rows] M = np.eye(2 * N + 1) M[1 : 2 * N + 1, 1 : 2 * N + 1] = S return M
[docs] def adjoint(self): U = self.parameters[0] return InterferometerUnitary(qml_math.T(qml_math.conj(U)), wires=self.wires)
[docs] def label(self, decimals=None, base_label=None, cache=None): return super().label(decimals=decimals, base_label=base_label or "U", cache=cache)
# ============================================================================= # State preparation # ============================================================================= # TODO: put Heisenberg reps of state preparations in docstrings?
[docs]class CoherentState(CVOperation): r""" Prepares a coherent state. **Details:** * Number of wires: 1 * Number of parameters: 2 * Gradient recipe: None (uses finite difference) Args: a (float): displacement magnitude :math:`r=|\alpha|` phi (float): phase angle :math:`\phi` wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 2 num_wires = 1 grad_method = "F" def __init__(self, a, phi, wires, id=None): super().__init__(a, phi, wires=wires, id=id)
[docs]class SqueezedState(CVOperation): r""" Prepares a squeezed vacuum state. **Details:** * Number of wires: 1 * Number of parameters: 2 * Gradient recipe: None (uses finite difference) Args: r (float): squeezing magnitude phi (float): squeezing angle :math:`\phi` wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 2 num_wires = 1 grad_method = "F" def __init__(self, r, phi, wires, id=None): super().__init__(r, phi, wires=wires, id=id)
[docs]class DisplacedSqueezedState(CVOperation): r""" Prepares a displaced squeezed vacuum state. A displaced squeezed state is prepared by squeezing a vacuum state, and then applying a displacement operator, .. math:: \ket{\alpha,z} = D(\alpha)\ket{0,z} = D(\alpha)S(z)\ket{0}, with the displacement parameter :math:`\alpha=ae^{i\phi_a}` and the squeezing parameter :math:`z=re^{i\phi_r}`. **Details:** * Number of wires: 1 * Number of parameters: 4 * Gradient recipe: None (uses finite difference) Args: a (float): displacement magnitude :math:`a=|\alpha|` phi_a (float): displacement angle :math:`\phi_a` r (float): squeezing magnitude :math:`r=|z|` phi_r (float): squeezing angle :math:`\phi_r` wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 4 num_wires = 1 grad_method = "F" def __init__(self, a, phi_a, r, phi_r, wires, id=None): super().__init__(a, phi_a, r, phi_r, wires=wires, id=id)
[docs]class ThermalState(CVOperation): r""" Prepares a thermal state. **Details:** * Number of wires: 1 * Number of parameters: 1 * Gradient recipe: None (uses finite difference) Args: nbar (float): mean thermal population of the mode wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = 1 grad_method = "F" def __init__(self, nbar, wires, id=None): super().__init__(nbar, wires=wires, id=id)
[docs] def label(self, decimals=None, base_label=None, cache=None): return super().label(decimals=decimals, base_label=base_label or "Thermal", cache=cache)
[docs]class GaussianState(CVOperation): r""" Prepare subsystems in a given Gaussian state. **Details:** * Number of wires: Any * Number of parameters: 2 * Gradient recipe: None Args: V (array): the :math:`2N\times 2N` (real and positive definite) covariance matrix r (array): a length :math:`2N` vector of means, of the form :math:`(\x_0,\dots,\x_{N-1},\p_0,\dots,\p_{N-1})` wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 2 num_wires = AnyWires grad_method = "F" def __init__(self, V, r, wires, id=None): super().__init__(V, r, wires=wires, id=id)
[docs] def label(self, decimals=None, base_label=None, cache=None): return super().label(decimals=decimals, base_label=base_label or "Gaussian", cache=cache)
[docs]class FockState(CVOperation): r""" Prepares a single Fock state. **Details:** * Number of wires: 1 * Number of parameters: 1 * Gradient recipe: None (not differentiable) Args: n (int): Fock state to prepare wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = 1 grad_method = None def __init__(self, n, wires, id=None): super().__init__(n, wires=wires, id=id)
[docs] def label(self, decimals=None, base_label=None, cache=None): r"""A customizable string representation of the operator. Args: decimals=None (int): If ``None``, no parameters are included. Else, specifies how to round the parameters. base_label=None (str): overwrite the non-parameter component of the label cache=None (dict): dictionary that caries information between label calls in the same drawing Returns: str: label to use in drawings **Example:** >>> qml.FockState(7, wires=0).label() '|7⟩' """ if base_label is not None: if decimals is None: return base_label p = format(qml_math.asarray(self.parameters[0]), ".0f") return base_label + f"\n({p})" return f"|{qml_math.asarray(self.parameters[0])}⟩"
[docs]class FockStateVector(CVOperation): r""" Prepare subsystems using the given ket vector in the Fock basis. **Details:** * Number of wires: Any * Number of parameters: 1 * Gradient recipe: None (uses finite difference) Args: state (array): a single ket vector, for single mode state preparation, or a multimode ket, with one array dimension per mode wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) .. details:: :title: Usage Details For a single mode with cutoff dimension :math:`N`, the input is a 1-dimensional vector of length :math:`N`. .. code-block:: dev_fock = qml.device("strawberryfields.fock", wires=4, cutoff_dim=4) state = np.array([0, 0, 1, 0]) @qml.qnode(dev_fock) def circuit(): qml.FockStateVector(state, wires=0) return qml.expval(qml.NumberOperator(wires=0)) For multiple modes, the input is the tensor product of single mode kets. For example, given a set of :math:`M` single mode vectors of length :math:`N`, the input should have shape ``(N, ) * M``. .. code-block:: used_wires = [0, 3] cutoff_dim = 5 dev_fock = qml.device("strawberryfields.fock", wires=4, cutoff_dim=cutoff_dim) state_1 = np.array([0, 1, 0, 0, 0]) state_2 = np.array([0, 0, 0, 1, 0]) combined_state = np.kron(state_1, state_2).reshape( (cutoff_dim, ) * len(used_wires) ) @qml.qnode(dev_fock) def circuit(): qml.FockStateVector(combined_state, wires=used_wires) return qml.expval(qml.NumberOperator(wires=0)) """ num_params = 1 num_wires = AnyWires grad_method = "F" def __init__(self, state, wires, id=None): super().__init__(state, wires=wires, id=id)
[docs] def label(self, decimals=None, base_label=None, cache=None): r"""A customizable string representation of the operator. Args: decimals=None (int): If ``None``, no parameters are included. Else, specifies how to round the parameters. base_label=None (str): overwrite the non-parameter component of the label cache=None (dict): dictionary that caries information between label calls in the same drawing Returns: str: label to use in drawings **Example:** >>> qml.FockStateVector([1,2,3], wires=(0,1,2)).label() '|123⟩' """ if base_label is not None: return base_label basis_string = "".join(str(int(i)) for i in self.parameters[0]) return f"|{basis_string}⟩"
[docs]class FockDensityMatrix(CVOperation): r""" Prepare subsystems using the given density matrix in the Fock basis. **Details:** * Number of wires: Any * Number of parameters: 1 * Gradient recipe: None (uses finite difference) Args: state (array): a single mode matrix :math:`\rho_{ij}`, or a multimode tensor :math:`\rho_{ij,kl,\dots,mn}`, with two indices per mode wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = AnyWires grad_method = "F" def __init__(self, state, wires, id=None): super().__init__(state, wires=wires, id=id)
[docs]class CatState(CVOperation): r""" Prepares a cat state. A cat state is the coherent superposition of two coherent states, .. math:: \ket{\text{cat}(\alpha)} = \frac{1}{N} (\ket{\alpha} +e^{ip\pi} \ket{-\alpha}), where :math:`\ket{\pm\alpha} = D(\pm\alpha)\ket{0}` are coherent states with displacement parameters :math:`\pm\alpha=\pm ae^{i\phi}` and :math:`N = \sqrt{2 (1+\cos(p\pi)e^{-2|\alpha|^2})}` is the normalization factor. **Details:** * Number of wires: 1 * Number of parameters: 3 * Gradient recipe: None (uses finite difference) Args: a (float): displacement magnitude :math:`a=|\alpha|` phi (float): displacement angle :math:`\phi` p (float): parity, where :math:`p=0` corresponds to an even cat state, and :math:`p=1` an odd cat state. wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 3 num_wires = 1 grad_method = "F" def __init__(self, a, phi, p, wires, id=None): super().__init__(a, phi, p, wires=wires, id=id)
# ============================================================================= # Observables # =============================================================================
[docs]class NumberOperator(CVObservable): r""" The photon number observable :math:`\langle \hat{n}\rangle`. The number operator is defined as :math:`\hat{n} = \a^\dagger \a = \frac{1}{2\hbar}(\x^2 +\p^2) -\I/2`. When used with the :func:`~pennylane.expval` function, the mean photon number :math:`\braket{\hat{n}}` is returned. **Details:** * Number of wires: 1 * Number of parameters: 0 * Observable order: 2nd order in the quadrature operators * Heisenberg representation: .. math:: M = \frac{1}{2\hbar}\begin{bmatrix} -\hbar & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} Args: wires (Sequence[Any] or Any): the wire the operation acts on """ num_params = 0 num_wires = 1 ev_order = 2 def __init__(self, wires): super().__init__(wires=wires) @staticmethod def _heisenberg_rep(p): hbar = 2 return np.diag([-0.5, 0.5 / hbar, 0.5 / hbar])
[docs] def label(self, decimals=None, base_label=None, cache=None): return base_label or "n"
[docs]class TensorN(CVObservable): r""" The tensor product of the :class:`~.NumberOperator` acting on different wires. If a single wire is defined, returns a :class:`~.NumberOperator` instance for convenient gradient computations. When used with the :func:`~pennylane.expval` function, the expectation value :math:`\langle \hat{n}_{i_0} \hat{n}_{i_1}\dots \hat{n}_{i_{N-1}}\rangle` for a (sub)set of modes :math:`[i_0, i_1, \dots, i_{N-1}]` of the system is returned. **Details:** * Number of wires: Any * Number of parameters: 0 Args: wires (Sequence[Any] or Any): the wire the operation acts on .. details:: :title: Usage Details Example for multiple modes: >>> cv_obs = qml.TensorN(wires=[0, 1]) >>> cv_obs TensorN(wires=[0, 1]) >>> cv_obs.ev_order is None True Example for a single mode (yields a :class:`~.NumberOperator`): >>> cv_obs = qml.TensorN(wires=[1]) >>> cv_obs NumberOperator(wires=[1]) >>> cv_obs.ev_order 2 """ num_params = 0 num_wires = AnyWires ev_order = None def __init__(self, wires): super().__init__(wires=wires) def __new__(cls, wires=None): # Custom definition for __new__ needed such that a NumberOperator can # be returned when a single mode is defined if wires is not None and (isinstance(wires, int) or len(wires) == 1): return NumberOperator(wires=wires) return super().__new__(cls)
[docs] def label(self, decimals=None, base_label=None, cache=None): if base_label is not None: return base_label return "⊗".join("n" for _ in self.wires)
[docs]class QuadX(CVObservable): r""" The position quadrature observable :math:`\hat{x}`. When used with the :func:`~pennylane.expval` function, the position expectation value :math:`\braket{\hat{x}}` is returned. This corresponds to the mean displacement in the phase space along the :math:`x` axis. **Details:** * Number of wires: 1 * Number of parameters: 0 * Observable order: 1st order in the quadrature operators * Heisenberg representation: .. math:: d = [0, 1, 0] Args: wires (Sequence[Any] or Any): the wire the operation acts on """ num_params = 0 num_wires = 1 ev_order = 1 def __init__(self, wires): super().__init__(wires=wires) @staticmethod def _heisenberg_rep(p): return np.array([0, 1, 0])
[docs]class QuadP(CVObservable): r""" The momentum quadrature observable :math:`\hat{p}`. When used with the :func:`~pennylane.expval` function, the momentum expectation value :math:`\braket{\hat{p}}` is returned. This corresponds to the mean displacement in the phase space along the :math:`p` axis. **Details:** * Number of wires: 1 * Number of parameters: 0 * Observable order: 1st order in the quadrature operators * Heisenberg representation: .. math:: d = [0, 0, 1] Args: wires (Sequence[Any] or Any): the wire the operation acts on """ num_params = 0 num_wires = 1 ev_order = 1 def __init__(self, wires): super().__init__(wires=wires) @staticmethod def _heisenberg_rep(p): return np.array([0, 0, 1])
[docs]class QuadOperator(CVObservable): r""" The generalized quadrature observable :math:`\x_\phi = \x cos\phi+\p\sin\phi`. When used with the :func:`~pennylane.expval` function, the expectation value :math:`\braket{\hat{\x_\phi}}` is returned. This corresponds to the mean displacement in the phase space along axis at angle :math:`\phi`. **Details:** * Number of wires: 1 * Number of parameters: 1 * Observable order: 1st order in the quadrature operators * Heisenberg representation: .. math:: d = [0, \cos\phi, \sin\phi] Args: phi (float): axis in the phase space at which to calculate the generalized quadrature observable wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = 1 grad_method = "A" ev_order = 1 def __init__(self, phi, wires, id=None): super().__init__(phi, wires=wires, id=id) @staticmethod def _heisenberg_rep(p): phi = p[0] return np.array([0, math.cos(phi), math.sin(phi)]) # TODO check
[docs] def label(self, decimals=None, base_label=None, cache=None): r"""A customizable string representation of the operator. Args: decimals=None (int): If ``None``, no parameters are included. Else, specifies how to round the parameters. base_label=None (str): overwrite the non-parameter component of the label cache=None (dict): dictionary that caries information between label calls in the same drawing Returns: str: label to use in drawings **Example:** >>> op = qml.QuadOperator(1.234, wires=0) >>> op.label() 'cos(φ)x\n+sin(φ)p' >>> op.label(decimals=2) 'cos(1.23)x\n+sin(1.23)p' >>> op.label(base_label="Quad", decimals=2) 'Quad\n(1.23)' """ if base_label is not None: return super().label(decimals=decimals, base_label=base_label, cache=cache) if decimals is None: p = "φ" else: p = format(qml_math.array(self.parameters[0]), f".{decimals}f") return f"cos({p})x\n+sin({p})p"
[docs]class PolyXP(CVObservable): r""" An arbitrary second-order polynomial observable. Represents an arbitrary observable :math:`P(\x,\p)` that is a second order polynomial in the basis :math:`\mathbf{r} = (\I, \x_0, \p_0, \x_1, \p_1, \ldots)`. For first-order observables the representation is a real vector :math:`\mathbf{d}` such that :math:`P(\x,\p) = \mathbf{d}^T \mathbf{r}`. For second-order observables the representation is a real symmetric matrix :math:`A` such that :math:`P(\x,\p) = \mathbf{r}^T A \mathbf{r}`. Used for evaluating arbitrary order-2 CV expectation values of :class:`~.pennylane.tape.CVParamShiftTape`. **Details:** * Number of wires: Any * Number of parameters: 1 * Observable order: 2nd order in the quadrature operators * Heisenberg representation: :math:`A` Args: q (array[float]): expansion coefficients wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = AnyWires grad_method = "F" ev_order = 2 def __init__(self, q, wires, id=None): super().__init__(q, wires=wires, id=id) @staticmethod def _heisenberg_rep(p): return p[0]
[docs]class FockStateProjector(CVObservable): r""" The number state observable :math:`\ket{n}\bra{n}`. Represents the non-Gaussian number state observable .. math:: \ket{n}\bra{n} = \ket{n_0, n_1, \dots, n_P}\bra{n_0, n_1, \dots, n_P} where :math:`n_i` is the occupation number of the :math:`i` th wire. The expectation of this observable is .. math:: E[\ket{n}\bra{n}] = \text{Tr}(\ket{n}\bra{n}\rho) = \text{Tr}(\braketT{n}{\rho}{n}) = \braketT{n}{\rho}{n} corresponding to the probability of measuring the quantum state in the state :math:`\ket{n}=\ket{n_0, n_1, \dots, n_P}`. .. note:: If ``expval(FockStateProjector)`` is applied to a subset of wires, the unaffected wires are traced out prior to the expectation value calculation. **Details:** * Number of wires: Any * Number of parameters: 1 * Observable order: None (non-Gaussian) Args: n (array): Array of non-negative integers representing the number state observable :math:`\ket{n}\bra{n}=\ket{n_0, n_1, \dots, n_P}\bra{n_0, n_1, \dots, n_P}`. For example, to return the observable :math:`\ket{0,4,2}\bra{0,4,2}` acting on wires 0, 1, and 3 of a QNode, you would call ``FockStateProjector(np.array([0, 4, 2], wires=[0, 1, 3]))``. Note that ``len(n)==len(wires)``, and that ``len(n)`` cannot exceed the total number of wires in the QNode. wires (Sequence[Any] or Any): the wire the operation acts on id (str or None): String representing the operation (optional) """ num_params = 1 num_wires = AnyWires grad_method = None ev_order = None def __init__(self, n, wires, id=None): super().__init__(n, wires=wires, id=id)
[docs] def label(self, decimals=None, base_label=None, cache=None): r"""A customizable string representation of the operator. Args: decimals=None (int): If ``None``, no parameters are included. Else, specifies how to round the parameters. base_label=None (str): overwrite the non-parameter component of the label cache=None (dict): dictionary that caries information between label calls in the same drawing Returns: str: label to use in drawings **Example:** >>> qml.FockStateProjector([1,2,3], wires=(0,1,2)).label() '|123⟩⟨123|' """ if base_label is not None: return super().label(decimals=decimals, base_label=base_label, cache=cache) basis_string = "".join(str(int(i)) for i in self.parameters[0]) return f"|{basis_string}⟩⟨{basis_string}|"
__ops__ = { "Identity", "Snapshot", "Beamsplitter", "ControlledAddition", "ControlledPhase", "Displacement", "Kerr", "CrossKerr", "QuadraticPhase", "Rotation", "Squeezing", "TwoModeSqueezing", "CubicPhase", "InterferometerUnitary", "CatState", "CoherentState", "FockDensityMatrix", "DisplacedSqueezedState", "FockState", "FockStateVector", "SqueezedState", "ThermalState", "GaussianState", } __obs__ = { "QuadOperator", "NumberOperator", "TensorN", "QuadP", "QuadX", "PolyXP", "FockStateProjector", } __all__ = list(__ops__ | __obs__)