qml.PolyXP¶

class
PolyXP
(q, wires, id=None)[source]¶ Bases:
pennylane.operation.CVObservable
An arbitrary secondorder polynomial observable.
Represents an arbitrary observable \(P(\x,\p)\) that is a second order polynomial in the basis \(\mathbf{r} = (\I, \x_0, \p_0, \x_1, \p_1, \ldots)\).
For firstorder observables the representation is a real vector \(\mathbf{d}\) such that \(P(\x,\p) = \mathbf{d}^T \mathbf{r}\).
For secondorder observables the representation is a real symmetric matrix \(A\) such that \(P(\x,\p) = \mathbf{r}^T A \mathbf{r}\).
Used for evaluating arbitrary order2 CV expectation values of
CVParamShiftTape
.Details:
Number of wires: Any
Number of parameters: 1
Observable order: 2nd order in the quadrature operators
Heisenberg representation: \(A\)
 Parameters
q (array[float]) – expansion coefficients
wires (Sequence[Any] or Any) – the wire the operation acts on
id (str or None) – String representing the operation (optional)
Attributes
Arithmetic depth of the operator.
Batch size of the operator if it is used with broadcasted parameters.
Order in (x, p) that a CV observable is a polynomial of.
Integer hash that uniquely represents the operator.
Dictionary of nontrainable variables that this operation depends on.
Custom string to label a specific operator instance.
All observables must be hermitian
String for the name of the operator.
Number of dimensions per trainable parameter of the operator.
Number of wires the operator acts on.
Trainable parameters that the operator depends on.
Measurement type that this observable is called with.
Wires that the operator acts on.

arithmetic_depth
¶ Arithmetic depth of the operator.

batch_size
¶ Batch size of the operator if it is used with broadcasted parameters.
The
batch_size
is determined based onndim_params
and the provided parameters for the operator. If (some of) the latter have an additional dimension, and this dimension has the same size for all parameters, its size is the batch size of the operator. If no parameter has an additional dimension, the batch size isNone
. Returns
Size of the parameter broadcasting dimension if present, else
None
. Return type
int or None

ev_order
= 2¶ Order in (x, p) that a CV observable is a polynomial of.
 Type
None, int

grad_method
= 'F'¶

has_adjoint
= False¶

has_decomposition
= False¶

has_diagonalizing_gates
= False¶

has_generator
= False¶

has_matrix
= False¶

hash
¶ Integer hash that uniquely represents the operator.
 Type
int

hyperparameters
¶ Dictionary of nontrainable variables that this operation depends on.
 Type
dict

id
¶ Custom string to label a specific operator instance.

is_hermitian
¶ All observables must be hermitian

name
¶ String for the name of the operator.

ndim_params
¶ Number of dimensions per trainable parameter of the operator.
By default, this property returns the numbers of dimensions of the parameters used for the operator creation. If the parameter sizes for an operator subclass are fixed, this property can be overwritten to return the fixed value.
 Returns
Number of dimensions for each trainable parameter.
 Return type
tuple

num_params
= 1¶

num_wires
= 1¶ Number of wires the operator acts on.

parameters
¶ Trainable parameters that the operator depends on.

return_type
= None¶ Measurement type that this observable is called with.
 Type
None or ObservableReturnTypes

supports_heisenberg
= True¶
Methods
adjoint
()Create an operation that is the adjoint of this one.
compare
(other)Compares with another
Hamiltonian
,Tensor
, orObservable
, to determine if they are equivalent.compute_decomposition
(*params[, wires])Representation of the operator as a product of other operators (static method).
compute_diagonalizing_gates
(*params, wires, …)Sequence of gates that diagonalize the operator in the computational basis (static method).
compute_eigvals
(*params, **hyperparams)Eigenvalues of the operator in the computational basis (static method).
compute_matrix
(*params, **hyperparams)Representation of the operator as a canonical matrix in the computational basis (static method).
compute_sparse_matrix
(*params, **hyperparams)Representation of the operator as a sparse matrix in the computational basis (static method).
Representation of the operator as a product of other operators.
Sequence of gates that diagonalize the operator in the computational basis.
eigvals
()Eigenvalues of the operator in the computational basis.
expand
()Returns a tape that contains the decomposition of the operator.
Generator of an operator that is in singleparameterform.
heisenberg_expand
(U, wire_order)Expand the given local Heisenbergpicture array into a fullsystem one.
heisenberg_obs
(wire_order)Representation of the observable in the position/momentum operator basis.
label
([decimals, base_label, cache])A customizable string representation of the operator.
map_wires
(wire_map)Returns a copy of the current operator with its wires changed according to the given wire map.
matrix
([wire_order])Representation of the operator as a matrix in the computational basis.
pow
(z)A list of new operators equal to this one raised to the given power.
queue
([context])Append the operator to the Operator queue.
simplify
()Reduce the depth of nested operators to the minimum.
sparse_matrix
([wire_order])Representation of the operator as a sparse matrix in the computational basis.
terms
()Representation of the operator as a linear combination of other operators.
validate_subspace
(subspace)Validate the subspace for qutrit operations.

adjoint
()¶ Create an operation that is the adjoint of this one.
Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops are equivalent to the inverted operation for unitary gates.
 Returns
The adjointed operation.

compare
(other)¶ Compares with another
Hamiltonian
,Tensor
, orObservable
, to determine if they are equivalent.Observables/Hamiltonians are equivalent if they represent the same operator (their matrix representations are equal), and they are defined on the same wires.
Warning
The compare method does not check if the matrix representation of a
Hermitian
observable is equal to an equivalent observable expressed in terms of Pauli matrices. To do so would require the matrix form of Hamiltonians and Tensors be calculated, which would drastically increase runtime. Returns
True if equivalent.
 Return type
(bool)
Examples
>>> ob1 = qml.PauliX(0) @ qml.Identity(1) >>> ob2 = qml.Hamiltonian([1], [qml.PauliX(0)]) >>> ob1.compare(ob2) True >>> ob1 = qml.PauliX(0) >>> ob2 = qml.Hermitian(np.array([[0, 1], [1, 0]]), 0) >>> ob1.compare(ob2) False

static
compute_decomposition
(*params, wires=None, **hyperparameters)¶ Representation of the operator as a product of other operators (static method).
\[O = O_1 O_2 \dots O_n.\]Note
Operations making up the decomposition should be queued within the
compute_decomposition
method.See also
 Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attributewires (Iterable[Any], Wires) – wires that the operator acts on
**hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
decomposition of the operator
 Return type
list[Operator]

static
compute_diagonalizing_gates
(*params, wires, **hyperparams)¶ Sequence of gates that diagonalize the operator in the computational basis (static method).
Given the eigendecomposition \(O = U \Sigma U^{\dagger}\) where \(\Sigma\) is a diagonal matrix containing the eigenvalues, the sequence of diagonalizing gates implements the unitary \(U^{\dagger}\).
The diagonalizing gates rotate the state into the eigenbasis of the operator.
See also
 Parameters
params (list) – trainable parameters of the operator, as stored in the
parameters
attributewires (Iterable[Any], Wires) – wires that the operator acts on
hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
list of diagonalizing gates
 Return type
list[Operator]

static
compute_eigvals
(*params, **hyperparams)¶ Eigenvalues of the operator in the computational basis (static method).
If
diagonalizing_gates
are specified and implement a unitary \(U^{\dagger}\), the operator can be reconstructed as\[O = U \Sigma U^{\dagger},\]where \(\Sigma\) is the diagonal matrix containing the eigenvalues.
Otherwise, no particular order for the eigenvalues is guaranteed.
See also
 Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attribute**hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
eigenvalues
 Return type
tensor_like

static
compute_matrix
(*params, **hyperparams)¶ Representation of the operator as a canonical matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this assumes that the wires of the operator correspond to the global wire order.
See also
 Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attribute**hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
matrix representation
 Return type
tensor_like

static
compute_sparse_matrix
(*params, **hyperparams)¶ Representation of the operator as a sparse matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this assumes that the wires of the operator correspond to the global wire order.
See also
 Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attribute**hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
sparse matrix representation
 Return type
scipy.sparse._csr.csr_matrix

decomposition
()¶ Representation of the operator as a product of other operators.
\[O = O_1 O_2 \dots O_n\]A
DecompositionUndefinedError
is raised if no representation by decomposition is defined.See also
 Returns
decomposition of the operator
 Return type
list[Operator]

diagonalizing_gates
()¶ Sequence of gates that diagonalize the operator in the computational basis.
Given the eigendecomposition \(O = U \Sigma U^{\dagger}\) where \(\Sigma\) is a diagonal matrix containing the eigenvalues, the sequence of diagonalizing gates implements the unitary \(U^{\dagger}\).
The diagonalizing gates rotate the state into the eigenbasis of the operator.
A
DiagGatesUndefinedError
is raised if no representation by decomposition is defined.See also
 Returns
a list of operators
 Return type
list[Operator] or None

eigvals
()¶ Eigenvalues of the operator in the computational basis.
If
diagonalizing_gates
are specified and implement a unitary \(U^{\dagger}\), the operator can be reconstructed as\[O = U \Sigma U^{\dagger},\]where \(\Sigma\) is the diagonal matrix containing the eigenvalues.
Otherwise, no particular order for the eigenvalues is guaranteed.
Note
When eigenvalues are not explicitly defined, they are computed automatically from the matrix representation. Currently, this computation is not differentiable.
A
EigvalsUndefinedError
is raised if the eigenvalues have not been defined and cannot be inferred from the matrix representation.See also
 Returns
eigenvalues
 Return type
tensor_like

expand
()¶ Returns a tape that contains the decomposition of the operator.
 Returns
quantum tape
 Return type

generator
()¶ Generator of an operator that is in singleparameterform.
For example, for operator
\[U(\phi) = e^{i\phi (0.5 Y + Z\otimes X)}\]we get the generator
>>> U.generator() (0.5) [Y0] + (1.0) [Z0 X1]
The generator may also be provided in the form of a dense or sparse Hamiltonian (using
Hermitian
andSparseHamiltonian
respectively).The default value to return is
None
, indicating that the operation has no defined generator.

heisenberg_expand
(U, wire_order)¶ Expand the given local Heisenbergpicture array into a fullsystem one.
 Parameters
U (array[float]) – array to expand (expected to be of the dimension
1+2*self.num_wires
)wire_order (Wires) – global wire order defining which subspace the operator acts on
 Raises
ValueError – if the size of the input matrix is invalid or num_wires is incorrect
 Returns
expanded array, dimension
1+2*num_wires
 Return type
array[float]

heisenberg_obs
(wire_order)¶ Representation of the observable in the position/momentum operator basis.
Returns the expansion \(q\) of the observable, \(Q\), in the basis \(\mathbf{r} = (\I, \x_0, \p_0, \x_1, \p_1, \ldots)\).
For firstorder observables returns a real vector such that \(Q = \sum_i q_i \mathbf{r}_i\).
For secondorder observables returns a real symmetric matrix such that \(Q = \sum_{ij} q_{ij} \mathbf{r}_i \mathbf{r}_j\).
 Parameters
wire_order (Wires) – global wire order defining which subspace the operator acts on
 Returns
\(q\)
 Return type
array[float]

label
(decimals=None, base_label=None, cache=None)¶ A customizable string representation of the operator.
 Parameters
decimals=None (int) – If
None
, no parameters are included. Else, specifies how to round the parameters.base_label=None (str) – overwrite the nonparameter component of the label
cache=None (dict) – dictionary that carries information between label calls in the same drawing
 Returns
label to use in drawings
 Return type
str
Example:
>>> op = qml.RX(1.23456, wires=0) >>> op.label() "RX" >>> op.label(decimals=2) "RX\n(1.23)" >>> op.label(base_label="my_label") "my_label" >>> op.label(decimals=2, base_label="my_label") "my_label\n(1.23)"
If the operation has a matrixvalued parameter and a cache dictionary is provided, unique matrices will be cached in the
'matrices'
key list. The label will contain the index of the matrix in the'matrices'
list.>>> op2 = qml.QubitUnitary(np.eye(2), wires=0) >>> cache = {'matrices': []} >>> op2.label(cache=cache) 'U(M0)' >>> cache['matrices'] [tensor([[1., 0.], [0., 1.]], requires_grad=True)] >>> op3 = qml.QubitUnitary(np.eye(4), wires=(0,1)) >>> op3.label(cache=cache) 'U(M1)' >>> cache['matrices'] [tensor([[1., 0.], [0., 1.]], requires_grad=True), tensor([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]], requires_grad=True)]

map_wires
(wire_map)¶ Returns a copy of the current operator with its wires changed according to the given wire map.
 Parameters
wire_map (dict) – dictionary containing the old wires as keys and the new wires as values
 Returns
new operator
 Return type

matrix
(wire_order=None)¶ Representation of the operator as a matrix in the computational basis.
If
wire_order
is provided, the numerical representation considers the position of the operator’s wires in the global wire order. Otherwise, the wire order defaults to the operator’s wires.If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation framework as the parameters.
A
MatrixUndefinedError
is raised if the matrix representation has not been defined.See also
 Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s wires
 Returns
matrix representation
 Return type
tensor_like

pow
(z)¶ A list of new operators equal to this one raised to the given power.
 Parameters
z (float) – exponent for the operator
 Returns
list[
Operator
]

queue
(context=<class 'pennylane.queuing.QueuingManager'>)¶ Append the operator to the Operator queue.

simplify
()¶ Reduce the depth of nested operators to the minimum.
 Returns
simplified operator
 Return type

sparse_matrix
(wire_order=None)¶ Representation of the operator as a sparse matrix in the computational basis.
If
wire_order
is provided, the numerical representation considers the position of the operator’s wires in the global wire order. Otherwise, the wire order defaults to the operator’s wires.A
SparseMatrixUndefinedError
is raised if the sparse matrix representation has not been defined.See also
 Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s wires
 Returns
sparse matrix representation
 Return type
scipy.sparse._csr.csr_matrix

terms
()¶ Representation of the operator as a linear combination of other operators.
\[O = \sum_i c_i O_i\]A
TermsUndefinedError
is raised if no representation by terms is defined. Returns
list of coefficients \(c_i\) and list of operations \(O_i\)
 Return type
tuple[list[tensor_like or float], list[Operation]]

static
validate_subspace
(subspace)¶ Validate the subspace for qutrit operations.
This method determines whether a given subspace for qutrit operations is defined correctly or not. If not, a ValueError is thrown.
 Parameters
subspace (tuple[int]) – Subspace to check for correctness