qml.ops.op_math.Pow¶

class
Pow
(base=None, z=1, id=None)[source]¶ Bases:
pennylane.ops.op_math.symbolicop.ScalarSymbolicOp
Symbolic operator denoting an operator raised to a power.
 Parameters
base (Operator) – the operator to be raised to a power
z=1 (float) – the exponent
Example
>>> sqrt_x = Pow(qml.PauliX(0), 0.5) >>> sqrt_x.decomposition() [SX(wires=[0])] >>> qml.matrix(sqrt_x) array([[0.5+0.5j, 0.50.5j], [0.50.5j, 0.5+0.5j]]) >>> qml.matrix(qml.SX(0)) array([[0.5+0.5j, 0.50.5j], [0.50.5j, 0.5+0.5j]]) >>> qml.matrix(Pow(qml.T(0), 1.234)) array([[1. +0.j , 0. +0.j ], [0. +0.j , 0.56597465+0.82442265j]])
Attributes
Arithmetic depth of the operator.
The base operator.
Batch size of the operator if it is used with broadcasted parameters.
The trainable parameters
bool(x) > bool
bool(x) > bool
bool(x) > bool
bool(x) > bool
Integer hash that uniquely represents the operator.
Dictionary of nontrainable variables that this operation depends on.
Custom string to label a specific operator instance.
This property determines if an operator is hermitian.
String for the name of the operator.
Number of dimensions per trainable parameter of the operator.
Number of trainable parameters that the operator depends on.
Number of wires the operator acts on.
Trainable parameters that the operator depends on.
Wires that the operator acts on.
The exponent.

arithmetic_depth
¶

base
¶ The base operator.

batch_size
¶

data
¶ The trainable parameters

has_adjoint
= True¶

has_decomposition
¶

has_diagonalizing_gates
¶

has_generator
¶

has_matrix
¶

hash
¶

hyperparameters
¶ Dictionary of nontrainable variables that this operation depends on.
 Type
dict

id
¶ Custom string to label a specific operator instance.

is_hermitian
¶

name
¶ String for the name of the operator.

ndim_params
¶

num_params
¶

num_wires
¶ Number of wires the operator acts on.

parameters
¶ Trainable parameters that the operator depends on.

wires
¶

z
¶ The exponent.
Methods
adjoint
()Create an operation that is the adjoint of this one.
compute_decomposition
(*params[, wires])Representation of the operator as a product of other operators (static method).
compute_diagonalizing_gates
(*params, wires, …)Sequence of gates that diagonalize the operator in the computational basis (static method).
compute_eigvals
(*params, **hyperparams)Eigenvalues of the operator in the computational basis (static method).
compute_matrix
(*params, **hyperparams)Representation of the operator as a canonical matrix in the computational basis (static method).
compute_sparse_matrix
(*params[, base, z])Representation of the operator as a sparse matrix in the computational basis (static method).
Representation of the operator as a product of other operators.
Sequence of gates that diagonalize the operator in the computational basis.
eigvals
()Eigenvalues of the operator in the computational basis.
expand
()Returns a tape that contains the decomposition of the operator.
Generator of an operator that is in singleparameterform.
label
([decimals, base_label, cache])A customizable string representation of the operator.
map_wires
(wire_map)Returns a copy of the current operator with its wires changed according to the given wire map.
matrix
([wire_order])Representation of the operator as a matrix in the computational basis.
pow
(z)A list of new operators equal to this one raised to the given power.
queue
([context])Append the operator to the Operator queue.
simplify
()Reduce the depth of nested operators to the minimum.
sparse_matrix
([wire_order])Representation of the operator as a sparse matrix in the computational basis.
terms
()Representation of the operator as a linear combination of other operators.
validate_subspace
(subspace)Validate the subspace for qutrit operations.

adjoint
()[source]¶ Create an operation that is the adjoint of this one.
Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops are equivalent to the inverted operation for unitary gates.
 Returns
The adjointed operation.

static
compute_decomposition
(*params, wires=None, **hyperparameters)¶ Representation of the operator as a product of other operators (static method).
\[O = O_1 O_2 \dots O_n.\]Note
Operations making up the decomposition should be queued within the
compute_decomposition
method.See also
 Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attributewires (Iterable[Any], Wires) – wires that the operator acts on
**hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
decomposition of the operator
 Return type
list[Operator]

static
compute_diagonalizing_gates
(*params, wires, **hyperparams)¶ Sequence of gates that diagonalize the operator in the computational basis (static method).
Given the eigendecomposition \(O = U \Sigma U^{\dagger}\) where \(\Sigma\) is a diagonal matrix containing the eigenvalues, the sequence of diagonalizing gates implements the unitary \(U^{\dagger}\).
The diagonalizing gates rotate the state into the eigenbasis of the operator.
See also
 Parameters
params (list) – trainable parameters of the operator, as stored in the
parameters
attributewires (Iterable[Any], Wires) – wires that the operator acts on
hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
list of diagonalizing gates
 Return type
list[Operator]

static
compute_eigvals
(*params, **hyperparams)¶ Eigenvalues of the operator in the computational basis (static method).
If
diagonalizing_gates
are specified and implement a unitary \(U^{\dagger}\), the operator can be reconstructed as\[O = U \Sigma U^{\dagger},\]where \(\Sigma\) is the diagonal matrix containing the eigenvalues.
Otherwise, no particular order for the eigenvalues is guaranteed.
See also
 Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attribute**hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
eigenvalues
 Return type
tensor_like

static
compute_matrix
(*params, **hyperparams)¶ Representation of the operator as a canonical matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this assumes that the wires of the operator correspond to the global wire order.
See also
 Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attribute**hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
matrix representation
 Return type
tensor_like

static
compute_sparse_matrix
(*params, base=None, z=0)[source]¶ Representation of the operator as a sparse matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this assumes that the wires of the operator correspond to the global wire order.
See also
 Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attribute**hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
sparse matrix representation
 Return type
scipy.sparse._csr.csr_matrix

decomposition
()[source]¶ Representation of the operator as a product of other operators.
\[O = O_1 O_2 \dots O_n\]A
DecompositionUndefinedError
is raised if no representation by decomposition is defined.See also
 Returns
decomposition of the operator
 Return type
list[Operator]

diagonalizing_gates
()[source]¶ Sequence of gates that diagonalize the operator in the computational basis.
Given the eigendecomposition \(O = U \Sigma U^{\dagger}\) where \(\Sigma\) is a diagonal matrix containing the eigenvalues, the sequence of diagonalizing gates implements the unitary \(U^{\dagger}\).
The diagonalizing gates of an operator to a power is the same as the diagonalizing gates as the original operator. As we can see,
\[O^2 = U \Sigma U^{\dagger} U \Sigma U^{\dagger} = U \Sigma^2 U^{\dagger}\]This formula can be extended to inversion and any rational number.
The diagonalizing gates rotate the state into the eigenbasis of the operator.
A
DiagGatesUndefinedError
is raised if no representation by decomposition is defined.See also
 Returns
a list of operators
 Return type
list[Operator] or None

eigvals
()[source]¶ Eigenvalues of the operator in the computational basis.
If
diagonalizing_gates
are specified and implement a unitary \(U^{\dagger}\), the operator can be reconstructed as\[O = U \Sigma U^{\dagger},\]where \(\Sigma\) is the diagonal matrix containing the eigenvalues.
Otherwise, no particular order for the eigenvalues is guaranteed.
Note
When eigenvalues are not explicitly defined, they are computed automatically from the matrix representation. Currently, this computation is not differentiable.
A
EigvalsUndefinedError
is raised if the eigenvalues have not been defined and cannot be inferred from the matrix representation.See also
 Returns
eigenvalues
 Return type
tensor_like

expand
()¶ Returns a tape that contains the decomposition of the operator.
 Returns
quantum tape
 Return type

generator
()[source]¶ Generator of an operator that is in singleparameterform.
The generator of a power operator is
z
times the generator of the base matrix.\[U(\phi)^z = e^{i\phi (z G)}\]See also
generator()

label
(decimals=None, base_label=None, cache=None)[source]¶ A customizable string representation of the operator.
 Parameters
decimals=None (int) – If
None
, no parameters are included. Else, specifies how to round the parameters.base_label=None (str) – overwrite the nonparameter component of the label
cache=None (dict) – dictionary that carries information between label calls in the same drawing
 Returns
label to use in drawings
 Return type
str
Example:
>>> op = qml.RX(1.23456, wires=0) >>> op.label() "RX" >>> op.label(decimals=2) "RX\n(1.23)" >>> op.label(base_label="my_label") "my_label" >>> op.label(decimals=2, base_label="my_label") "my_label\n(1.23)"
If the operation has a matrixvalued parameter and a cache dictionary is provided, unique matrices will be cached in the
'matrices'
key list. The label will contain the index of the matrix in the'matrices'
list.>>> op2 = qml.QubitUnitary(np.eye(2), wires=0) >>> cache = {'matrices': []} >>> op2.label(cache=cache) 'U(M0)' >>> cache['matrices'] [tensor([[1., 0.], [0., 1.]], requires_grad=True)] >>> op3 = qml.QubitUnitary(np.eye(4), wires=(0,1)) >>> op3.label(cache=cache) 'U(M1)' >>> cache['matrices'] [tensor([[1., 0.], [0., 1.]], requires_grad=True), tensor([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]], requires_grad=True)]

map_wires
(wire_map)¶ Returns a copy of the current operator with its wires changed according to the given wire map.
 Parameters
wire_map (dict) – dictionary containing the old wires as keys and the new wires as values
 Returns
new operator
 Return type

matrix
(wire_order=None)¶ Representation of the operator as a matrix in the computational basis.
If
wire_order
is provided, the numerical representation considers the position of the operator’s wires in the global wire order. Otherwise, the wire order defaults to the operator’s wires.If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation framework as the parameters.
A
MatrixUndefinedError
is raised if the base matrix representation has not been defined.See also
 Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the
wires (operator's) –
 Returns
matrix representation
 Return type
tensor_like

pow
(z)[source]¶ A list of new operators equal to this one raised to the given power.
 Parameters
z (float) – exponent for the operator
 Returns
list[
Operator
]

queue
(context=<class 'pennylane.queuing.QueuingManager'>)¶ Append the operator to the Operator queue.

simplify
()[source]¶ Reduce the depth of nested operators to the minimum.
 Returns
simplified operator
 Return type

sparse_matrix
(wire_order=None)¶ Representation of the operator as a sparse matrix in the computational basis.
If
wire_order
is provided, the numerical representation considers the position of the operator’s wires in the global wire order. Otherwise, the wire order defaults to the operator’s wires.A
SparseMatrixUndefinedError
is raised if the sparse matrix representation has not been defined.See also
 Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s wires
 Returns
sparse matrix representation
 Return type
scipy.sparse._csr.csr_matrix

terms
()¶ Representation of the operator as a linear combination of other operators.
\[O = \sum_i c_i O_i\]A
TermsUndefinedError
is raised if no representation by terms is defined. Returns
list of coefficients \(c_i\) and list of operations \(O_i\)
 Return type
tuple[list[tensor_like or float], list[Operation]]

static
validate_subspace
(subspace)¶ Validate the subspace for qutrit operations.
This method determines whether a given subspace for qutrit operations is defined correctly or not. If not, a ValueError is thrown.
 Parameters
subspace (tuple[int]) – Subspace to check for correctness