qml.ops.op_math.Evolution¶

class
Evolution
(generator, param=1, num_steps=None, id=None)[source]¶ Bases:
pennylane.ops.op_math.exp.Exp
Create an exponential operator that defines a generator, of the form \(e^{ix\hat{G}}\)
 Parameters
base (Operator) – The operator to be used as a generator, G.
param (float) – The evolution parameter, x. This parameter is expected not to have any complex component.
num_steps (int) – The number of steps used in the decomposition of the exponential operator, also known as the Trotter number. If this value is None and the SuzukiTrotter decomposition is needed, an error will be raised.
id (str) – id for the Evolution operator. Default is None.
 Returns
A
Operator
representing an operator exponential of the form \(e^{ix\hat{G}}\), where x is real. Return type
Usage Details
In contrast to the general
Exp
class, theEvolution
operator \(e^{ix\hat{G}}\) is constrained to have a single trainable parameter, x. Any parameters contained in the base operator are not trainable. This allows the operator to be differentiated with regard to the evolution parameter. Defining a mathematically identical operator using theExp
class will be incompatible with a variety of PennyLane functions that require only a single trainable parameter.Example This symbolic operator can be used to make general rotation operators:
>>> theta = np.array(1.23) >>> op = Evolution(qml.X(0), 0.5 * theta) >>> qml.math.allclose(op.matrix(), qml.RX(theta, wires=0).matrix()) True
Or to define a time evolution operator for a timeindependent Hamiltonian:
>>> H = qml.Hamiltonian([1, 1], [qml.Y(0), qml.X(1)]) >>> t = 10e6 >>> U = Evolution(H, t)
If the base operator is Hermitian, then the gate can be used in a circuit, though it may not be supported by the device and may not be differentiable.
>>> @qml.qnode(qml.device('default.qubit', wires=1)) ... def circuit(x): ... qml.ops.Evolution(qml.X(0), 0.5 * x) ... return qml.expval(qml.Z(0)) >>> print(qml.draw(circuit)(1.23)) 0: ──Exp(0.61j X)─┤ <Z>
Attributes
Arithmetic depth of the operator.
The base operator.
The basis of an operation, or for controlled gates, of the target operation.
Batch size of the operator if it is used with broadcasted parameters.
The numerical coefficient of the operator in the exponent.
The trainable parameters
Gradient computation method.
Gradient recipe for the parametershift method.
bool(x) > bool
bool(x) > bool
bool(x) > bool
bool(x) > bool
Integer hash that uniquely represents the operator.
Dictionary of nontrainable variables that this operation depends on.
Custom string to label a specific operator instance.
This property determines if an operator is hermitian.
String for the name of the operator.
Number of dimensions per trainable parameter of the operator.
Number of wires the operator acts on.
A real coefficient with
1j
factored out.Returns the frequencies for each operator parameter with respect to an expectation value of the form \(\langle \psi  U(\mathbf{p})^\dagger \hat{O} U(\mathbf{p})\psi\rangle\).
Trainable parameters that the operator depends on.
A
PauliSentence
representation of the Operator, orNone
if it doesn’t have one.Wires that the operator acts on.

arithmetic_depth
¶

base
¶ The base operator.

basis
¶

batch_size
¶

coeff
¶

control_wires
= <Wires = []>¶

data
¶

grad_method
¶ Gradient computation method.
'A'
: analytic differentiation using the parametershift method.'F'
: finite difference numerical differentiation.None
: the operation may not be differentiated.
Default is
'F'
, orNone
if the Operation has zero parameters.

grad_recipe
= None¶ Gradient recipe for the parametershift method.
This is a tuple with one nested list per operation parameter. For parameter \(\phi_k\), the nested list contains elements of the form \([c_i, a_i, s_i]\) where \(i\) is the index of the term, resulting in a gradient recipe of
\[\frac{\partial}{\partial\phi_k}f = \sum_{i} c_i f(a_i \phi_k + s_i).\]If
None
, the default gradient recipe containing the two terms \([c_0, a_0, s_0]=[1/2, 1, \pi/2]\) and \([c_1, a_1, s_1]=[1/2, 1, \pi/2]\) is assumed for every parameter. Type
tuple(Union(list[list[float]], None)) or None

has_adjoint
= False¶

has_decomposition
¶

has_diagonalizing_gates
¶

has_generator
¶

has_matrix
¶

hash
¶

hyperparameters
¶ Dictionary of nontrainable variables that this operation depends on.
 Type
dict

id
¶ Custom string to label a specific operator instance.

is_hermitian
¶

name
¶ String for the name of the operator.

ndim_params
¶ Number of dimensions per trainable parameter of the operator.
By default, this property returns the numbers of dimensions of the parameters used for the operator creation. If the parameter sizes for an operator subclass are fixed, this property can be overwritten to return the fixed value.
 Returns
Number of dimensions for each trainable parameter.
 Return type
tuple

num_params
= 1¶

num_wires
¶ Number of wires the operator acts on.

param
¶ A real coefficient with
1j
factored out.

parameter_frequencies
¶ Returns the frequencies for each operator parameter with respect to an expectation value of the form \(\langle \psi  U(\mathbf{p})^\dagger \hat{O} U(\mathbf{p})\psi\rangle\).
These frequencies encode the behaviour of the operator \(U(\mathbf{p})\) on the value of the expectation value as the parameters are modified. For more details, please see the
pennylane.fourier
module. Returns
Tuple of frequencies for each parameter. Note that only nonnegative frequency values are returned.
 Return type
list[tuple[int or float]]
Example
>>> op = qml.CRot(0.4, 0.1, 0.3, wires=[0, 1]) >>> op.parameter_frequencies [(0.5, 1), (0.5, 1), (0.5, 1)]
For operators that define a generator, the parameter frequencies are directly related to the eigenvalues of the generator:
>>> op = qml.ControlledPhaseShift(0.1, wires=[0, 1]) >>> op.parameter_frequencies [(1,)] >>> gen = qml.generator(op, format="observable") >>> gen_eigvals = qml.eigvals(gen) >>> qml.gradients.eigvals_to_frequencies(tuple(gen_eigvals)) (1.0,)
For more details on this relationship, see
eigvals_to_frequencies()
.

parameters
¶ Trainable parameters that the operator depends on.

pauli_rep
¶ A
PauliSentence
representation of the Operator, orNone
if it doesn’t have one.

wires
¶
Methods
adjoint
()Create an operation that is the adjoint of this one.
compute_decomposition
(*params[, wires])Representation of the operator as a product of other operators (static method).
compute_diagonalizing_gates
(*params, wires, …)Sequence of gates that diagonalize the operator in the computational basis (static method).
compute_eigvals
(*params, **hyperparams)Eigenvalues of the operator in the computational basis (static method).
compute_matrix
(*params, **hyperparams)Representation of the operator as a canonical matrix in the computational basis (static method).
compute_sparse_matrix
(*params, **hyperparams)Representation of the operator as a sparse matrix in the computational basis (static method).
Representation of the operator as a product of other operators.
Sequence of gates that diagonalize the operator in the computational basis.
eigvals
()Eigenvalues of the operator in the computational basis.
expand
()Returns a tape that contains the decomposition of the operator.
Generator of an operator that is in singleparameterform.
label
([decimals, base_label, cache])A customizable string representation of the operator.
map_wires
(wire_map)Returns a copy of the current operator with its wires changed according to the given wire map.
matrix
([wire_order])Representation of the operator as a matrix in the computational basis.
pow
(z)A list of new operators equal to this one raised to the given power.
queue
([context])Append the operator to the Operator queue.
simplify
()Reduce the depth of nested operators to the minimum.
The parameters required to implement a singlequbit gate as an equivalent
Rot
gate, up to a global phase.sparse_matrix
([wire_order, format])Representation of the operator as a sparse matrix in the computational basis.
terms
()Representation of the operator as a linear combination of other operators.

adjoint
()¶ Create an operation that is the adjoint of this one.
Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops are equivalent to the inverted operation for unitary gates.
 Returns
The adjointed operation.

static
compute_decomposition
(*params, wires=None, **hyperparameters)¶ Representation of the operator as a product of other operators (static method).
\[O = O_1 O_2 \dots O_n.\]Note
Operations making up the decomposition should be queued within the
compute_decomposition
method.See also
 Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attributewires (Iterable[Any], Wires) – wires that the operator acts on
**hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
decomposition of the operator
 Return type
list[Operator]

static
compute_diagonalizing_gates
(*params, wires, **hyperparams)¶ Sequence of gates that diagonalize the operator in the computational basis (static method).
Given the eigendecomposition \(O = U \Sigma U^{\dagger}\) where \(\Sigma\) is a diagonal matrix containing the eigenvalues, the sequence of diagonalizing gates implements the unitary \(U^{\dagger}\).
The diagonalizing gates rotate the state into the eigenbasis of the operator.
See also
 Parameters
params (list) – trainable parameters of the operator, as stored in the
parameters
attributewires (Iterable[Any], Wires) – wires that the operator acts on
hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
list of diagonalizing gates
 Return type
list[Operator]

static
compute_eigvals
(*params, **hyperparams)¶ Eigenvalues of the operator in the computational basis (static method).
If
diagonalizing_gates
are specified and implement a unitary \(U^{\dagger}\), the operator can be reconstructed as\[O = U \Sigma U^{\dagger},\]where \(\Sigma\) is the diagonal matrix containing the eigenvalues.
Otherwise, no particular order for the eigenvalues is guaranteed.
See also
 Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attribute**hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
eigenvalues
 Return type
tensor_like

static
compute_matrix
(*params, **hyperparams)¶ Representation of the operator as a canonical matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this assumes that the wires of the operator correspond to the global wire order.
See also
 Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attribute**hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
matrix representation
 Return type
tensor_like

static
compute_sparse_matrix
(*params, **hyperparams)¶ Representation of the operator as a sparse matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this assumes that the wires of the operator correspond to the global wire order.
See also
 Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attribute**hyperparams (dict) – nontrainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
 Returns
sparse matrix representation
 Return type
scipy.sparse._csr.csr_matrix

decomposition
()¶ Representation of the operator as a product of other operators. Decomposes into
PauliRot
if the coefficient is imaginary and the base is a Pauli Word.\[O = O_1 O_2 \dots O_n\]A
DecompositionUndefinedError
is raised if the coefficient is not imaginary or the base is not a Pauli Word. Returns
decomposition of the operator
 Return type
list[PauliRot]

diagonalizing_gates
()¶ Sequence of gates that diagonalize the operator in the computational basis.
Given the eigendecomposition \(O = U \Sigma U^{\dagger}\) where \(\Sigma\) is a diagonal matrix containing the eigenvalues, the sequence of diagonalizing gates implements the unitary \(U^{\dagger}\).
The diagonalizing gates rotate the state into the eigenbasis of the operator.
A
DiagGatesUndefinedError
is raised if no representation by decomposition is defined.See also
 Returns
a list of operators
 Return type
list[Operator] or None

eigvals
()¶ Eigenvalues of the operator in the computational basis.
\[c \mathbf{M} \mathbf{v} = c \lambda \mathbf{v} \quad \Longrightarrow \quad e^{c \mathbf{M}} \mathbf{v} = e^{c \lambda} \mathbf{v}\]>>> obs = Exp(qml.X(0), 3) >>> qml.eigvals(obs) array([20.08553692, 0.04978707]) >>> np.exp(3 * qml.eigvals(qml.X(0))) tensor([20.08553692, 0.04978707], requires_grad=True)

expand
()¶ Returns a tape that contains the decomposition of the operator.
 Returns
quantum tape
 Return type

generator
()[source]¶ Generator of an operator that is in singleparameterform.
For example, for operator
\[U(\phi) = e^{i\phi (0.5 Y + Z\otimes X)}\]we get the generator
>>> U.generator() 0.5 * Y(0) + Z(0) @ X(1)

label
(decimals=None, base_label=None, cache=None)[source]¶ A customizable string representation of the operator.
 Parameters
decimals=None (int) – If
None
, no parameters are included. Else, specifies how to round the parameters.base_label=None (str) – overwrite the nonparameter component of the label
cache=None (dict) – dictionary that carries information between label calls in the same drawing
 Returns
label to use in drawings
 Return type
str
Example:
>>> op = qml.RX(1.23456, wires=0) >>> op.label() "RX" >>> op.label(base_label="my_label") "my_label" >>> op = qml.RX(1.23456, wires=0, id="test_data") >>> op.label() "RX("test_data")" >>> op.label(decimals=2) "RX\n(1.23,"test_data")" >>> op.label(base_label="my_label") "my_label("test_data")" >>> op.label(decimals=2, base_label="my_label") "my_label\n(1.23,"test_data")"
If the operation has a matrixvalued parameter and a cache dictionary is provided, unique matrices will be cached in the
'matrices'
key list. The label will contain the index of the matrix in the'matrices'
list.>>> op2 = qml.QubitUnitary(np.eye(2), wires=0) >>> cache = {'matrices': []} >>> op2.label(cache=cache) 'U(M0)' >>> cache['matrices'] [tensor([[1., 0.], [0., 1.]], requires_grad=True)] >>> op3 = qml.QubitUnitary(np.eye(4), wires=(0,1)) >>> op3.label(cache=cache) 'U(M1)' >>> cache['matrices'] [tensor([[1., 0.], [0., 1.]], requires_grad=True), tensor([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]], requires_grad=True)]

map_wires
(wire_map)¶ Returns a copy of the current operator with its wires changed according to the given wire map.
 Parameters
wire_map (dict) – dictionary containing the old wires as keys and the new wires as values
 Returns
new operator
 Return type

matrix
(wire_order=None)¶ Representation of the operator as a matrix in the computational basis.
If
wire_order
is provided, the numerical representation considers the position of the operator’s wires in the global wire order. Otherwise, the wire order defaults to the operator’s wires.If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation framework as the parameters.
A
MatrixUndefinedError
is raised if the base matrix representation has not been defined.See also
 Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the
wires (operator's) –
 Returns
matrix representation
 Return type
tensor_like

pow
(z)¶ A list of new operators equal to this one raised to the given power.
 Parameters
z (float) – exponent for the operator
 Returns
list[
Operator
]

queue
(context=<class 'pennylane.queuing.QueuingManager'>)¶ Append the operator to the Operator queue.

simplify
()[source]¶ Reduce the depth of nested operators to the minimum.
 Returns
simplified operator
 Return type

single_qubit_rot_angles
()¶ The parameters required to implement a singlequbit gate as an equivalent
Rot
gate, up to a global phase. Returns
A list of values \([\phi, \theta, \omega]\) such that \(RZ(\omega) RY(\theta) RZ(\phi)\) is equivalent to the original operation.
 Return type
tuple[float, float, float]

sparse_matrix
(wire_order=None, format='csr')¶ Representation of the operator as a sparse matrix in the computational basis.
If
wire_order
is provided, the numerical representation considers the position of the operator’s wires in the global wire order. Otherwise, the wire order defaults to the operator’s wires.A
SparseMatrixUndefinedError
is raised if the sparse matrix representation has not been defined.See also
 Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s wires
 Returns
sparse matrix representation
 Return type
scipy.sparse._csr.csr_matrix

terms
()¶ Representation of the operator as a linear combination of other operators.
\[O = \sum_i c_i O_i\]A
TermsUndefinedError
is raised if no representation by terms is defined. Returns
list of coefficients \(c_i\) and list of operations \(O_i\)
 Return type
tuple[list[tensor_like or float], list[Operation]]