qml.PCPhase¶
- class PCPhase(phi, dim, wires)[source]¶
Bases:
pennylane.operation.Operation
A projector-controlled phase gate.
This gate applies a complex phase \(e^{i\phi}\) to the first \(dim\) basis vectors of the input state while applying a complex phase \(e^{-i \phi}\) to the remaining basis vectors. For example, consider the 2-qubit case where \(dim = 3\):
\[\begin{split}\Pi(\phi) = \begin{bmatrix} e^{i\phi} & 0 & 0 & 0 \\ 0 & e^{i\phi} & 0 & 0 \\ 0 & 0 & e^{i\phi} & 0 \\ 0 & 0 & 0 & e^{-i\phi} \end{bmatrix}.\end{split}\]Details:
Number of wires: Any (the operation can act on any number of wires)
Number of parameters: 1
Number of dimensions per parameter: (0,)
- Parameters
phi (float) – rotation angle \(\phi\)
dim (int) – the dimension of the subspace
wires (Iterable[int, str], Wires) – the wires the operation acts on
id (str or None) – String representing the operation (optional)
Example:
We can define a circuit using
PCPhase
as follows:>>> dev = qml.device('default.qubit', wires=2) >>> @qml.qnode(dev) >>> def example_circuit(): ... qml.PCPhase(0.27, dim = 2, wires=range(2)) ... return qml.state()
The resulting operation applies a complex phase \(e^{0.27i}\) to the first \(dim = 2\) basis vectors and \(e^{-0.27i}\) to the remaining basis vectors.
>>> print(np.round(qml.matrix(example_circuit)(),2)) [[0.96+0.27j 0. +0.j 0. +0.j 0. +0.j ] [0. +0.j 0.96+0.27j 0. +0.j 0. +0.j ] [0. +0.j 0. +0.j 0.96-0.27j 0. +0.j ] [0. +0.j 0. +0.j 0. +0.j 0.96-0.27j]]
We can also choose a different \(dim\) value to apply the phase shift to a different set of basis vectors as follows:
>>> pc_op = qml.PCPhase(1.23, dim=3, wires=[1, 2]) >>> print(np.round(qml.matrix(pc_op),2)) [[0.33+0.94j 0. +0.j 0. +0.j 0. +0.j ] [0. +0.j 0.33+0.94j 0. +0.j 0. +0.j ] [0. +0.j 0. +0.j 0.33+0.94j 0. +0.j ] [0. +0.j 0. +0.j 0. +0.j 0.33-0.94j]]
Attributes
Arithmetic depth of the operator.
Batch size of the operator if it is used with broadcasted parameters.
Control wires of the operator.
Gradient recipe for the parameter-shift method.
Integer hash that uniquely represents the operator.
Dictionary of non-trainable variables that this operation depends on.
Custom string to label a specific operator instance.
This property determines if an operator is hermitian.
String for the name of the operator.
Number of dimensions per trainable parameter that the operator depends on.
Number of trainable parameters that the operator depends on.
Number of wires the operator acts on.
Trainable parameters that the operator depends on.
A
PauliSentence
representation of the Operator, orNone
if it doesn't have one.Wires that the operator acts on.
- arithmetic_depth¶
Arithmetic depth of the operator.
- basis = 'Z'¶
- batch_size¶
Batch size of the operator if it is used with broadcasted parameters.
The
batch_size
is determined based onndim_params
and the provided parameters for the operator. If (some of) the latter have an additional dimension, and this dimension has the same size for all parameters, its size is the batch size of the operator. If no parameter has an additional dimension, the batch size isNone
.- Returns
Size of the parameter broadcasting dimension if present, else
None
.- Return type
int or None
- control_wires¶
Control wires of the operator.
For operations that are not controlled, this is an empty
Wires
object of length0
.- Returns
The control wires of the operation.
- Return type
- grad_method = 'A'¶
- grad_recipe = None¶
Gradient recipe for the parameter-shift method.
This is a tuple with one nested list per operation parameter. For parameter \(\phi_k\), the nested list contains elements of the form \([c_i, a_i, s_i]\) where \(i\) is the index of the term, resulting in a gradient recipe of
\[\frac{\partial}{\partial\phi_k}f = \sum_{i} c_i f(a_i \phi_k + s_i).\]If
None
, the default gradient recipe containing the two terms \([c_0, a_0, s_0]=[1/2, 1, \pi/2]\) and \([c_1, a_1, s_1]=[-1/2, 1, -\pi/2]\) is assumed for every parameter.- Type
tuple(Union(list[list[float]], None)) or None
- has_adjoint = True¶
- has_decomposition = True¶
- has_diagonalizing_gates = False¶
- has_generator = True¶
- has_matrix = True¶
- has_sparse_matrix = False¶
- hash¶
Integer hash that uniquely represents the operator.
- Type
int
- hyperparameters¶
Dictionary of non-trainable variables that this operation depends on.
- Type
dict
- id¶
Custom string to label a specific operator instance.
- is_hermitian¶
This property determines if an operator is hermitian.
- name¶
String for the name of the operator.
- ndim_params = (0,)¶
Number of dimensions per trainable parameter that the operator depends on.
- Type
tuple[int]
- num_params = 1¶
Number of trainable parameters that the operator depends on.
- Type
int
- num_wires = -1¶
Number of wires the operator acts on.
- parameter_frequencies = [(2,)]¶
- parameters¶
Trainable parameters that the operator depends on.
- pauli_rep¶
A
PauliSentence
representation of the Operator, orNone
if it doesn’t have one.
Methods
adjoint
()Computes the adjoint of the operator.
compute_decomposition
(*params[, wires])Representation of the operator as a product of other operators (static method).
compute_diagonalizing_gates
(*params, wires, ...)Sequence of gates that diagonalize the operator in the computational basis (static method).
compute_eigvals
(*params, **hyperparams)Get the eigvals for the Pi-controlled phase unitary.
compute_matrix
(phi, dimension)Get the matrix representation of Pi-controlled phase unitary.
compute_sparse_matrix
(*params, **hyperparams)Representation of the operator as a sparse matrix in the computational basis (static method).
Representation of the operator as a product of other operators.
Sequence of gates that diagonalize the operator in the computational basis.
eigvals
()Eigenvalues of the operator in the computational basis.
Generator of an operator that is in single-parameter-form.
label
([decimals, base_label, cache])The label of the operator when displayed in a circuit.
map_wires
(wire_map)Returns a copy of the current operator with its wires changed according to the given wire map.
matrix
([wire_order])Representation of the operator as a matrix in the computational basis.
pow
(z)Computes the operator raised to z.
queue
([context])Append the operator to the Operator queue.
simplify
()Simplifies the operator if possible.
The parameters required to implement a single-qubit gate as an equivalent
Rot
gate, up to a global phase.sparse_matrix
([wire_order])Representation of the operator as a sparse matrix in the computational basis.
terms
()Representation of the operator as a linear combination of other operators.
- static compute_decomposition(*params, wires=None, **hyperparams)[source]¶
Representation of the operator as a product of other operators (static method).
\[O = O_1 O_2 \dots O_n.\]Note
Operations making up the decomposition should be queued within the
compute_decomposition
method.See also
- Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attributewires (Iterable[Any], Wires) – wires that the operator acts on
**hyperparams (dict) – non-trainable hyper-parameters of the operator, as stored in the
hyperparameters
attribute
- Returns
decomposition of the operator
- Return type
list[Operator]
- static compute_diagonalizing_gates(*params, wires, **hyperparams)¶
Sequence of gates that diagonalize the operator in the computational basis (static method).
Given the eigendecomposition \(O = U \Sigma U^{\dagger}\) where \(\Sigma\) is a diagonal matrix containing the eigenvalues, the sequence of diagonalizing gates implements the unitary \(U^{\dagger}\).
The diagonalizing gates rotate the state into the eigenbasis of the operator.
See also
- Parameters
params (list) – trainable parameters of the operator, as stored in the
parameters
attributewires (Iterable[Any], Wires) – wires that the operator acts on
hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
- Returns
list of diagonalizing gates
- Return type
list[Operator]
- static compute_eigvals(*params, **hyperparams)[source]¶
Get the eigvals for the Pi-controlled phase unitary.
- static compute_matrix(phi, dimension)[source]¶
Get the matrix representation of Pi-controlled phase unitary.
- static compute_sparse_matrix(*params, **hyperparams)¶
Representation of the operator as a sparse matrix in the computational basis (static method).
The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this assumes that the wires of the operator correspond to the global wire order.
See also
- Parameters
*params (list) – trainable parameters of the operator, as stored in the
parameters
attribute**hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters
attribute
- Returns
sparse matrix representation
- Return type
scipy.sparse._csr.csr_matrix
- decomposition()¶
Representation of the operator as a product of other operators.
\[O = O_1 O_2 \dots O_n\]A
DecompositionUndefinedError
is raised if no representation by decomposition is defined.See also
- Returns
decomposition of the operator
- Return type
list[Operator]
- diagonalizing_gates()¶
Sequence of gates that diagonalize the operator in the computational basis.
Given the eigendecomposition \(O = U \Sigma U^{\dagger}\) where \(\Sigma\) is a diagonal matrix containing the eigenvalues, the sequence of diagonalizing gates implements the unitary \(U^{\dagger}\).
The diagonalizing gates rotate the state into the eigenbasis of the operator.
A
DiagGatesUndefinedError
is raised if no representation by decomposition is defined.See also
- Returns
a list of operators
- Return type
list[Operator] or None
- eigvals()¶
Eigenvalues of the operator in the computational basis.
If
diagonalizing_gates
are specified and implement a unitary \(U^{\dagger}\), the operator can be reconstructed as\[O = U \Sigma U^{\dagger},\]where \(\Sigma\) is the diagonal matrix containing the eigenvalues.
Otherwise, no particular order for the eigenvalues is guaranteed.
Note
When eigenvalues are not explicitly defined, they are computed automatically from the matrix representation. Currently, this computation is not differentiable.
A
EigvalsUndefinedError
is raised if the eigenvalues have not been defined and cannot be inferred from the matrix representation.See also
- Returns
eigenvalues
- Return type
tensor_like
- generator()[source]¶
Generator of an operator that is in single-parameter-form.
For example, for operator
\[U(\phi) = e^{i\phi (0.5 Y + Z\otimes X)}\]we get the generator
>>> U.generator() 0.5 * Y(0) + Z(0) @ X(1)
The generator may also be provided in the form of a dense or sparse Hamiltonian (using
Hamiltonian
andSparseHamiltonian
respectively).The default value to return is
None
, indicating that the operation has no defined generator.
- label(decimals=None, base_label=None, cache=None)[source]¶
The label of the operator when displayed in a circuit.
- map_wires(wire_map)¶
Returns a copy of the current operator with its wires changed according to the given wire map.
- Parameters
wire_map (dict) – dictionary containing the old wires as keys and the new wires as values
- Returns
new operator
- Return type
- matrix(wire_order=None)¶
Representation of the operator as a matrix in the computational basis.
If
wire_order
is provided, the numerical representation considers the position of the operator’s wires in the global wire order. Otherwise, the wire order defaults to the operator’s wires.If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation framework as the parameters.
A
MatrixUndefinedError
is raised if the matrix representation has not been defined.See also
- Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s wires
- Returns
matrix representation
- Return type
tensor_like
- queue(context=<class 'pennylane.queuing.QueuingManager'>)¶
Append the operator to the Operator queue.
- single_qubit_rot_angles()¶
The parameters required to implement a single-qubit gate as an equivalent
Rot
gate, up to a global phase.- Returns
A list of values \([\phi, \theta, \omega]\) such that \(RZ(\omega) RY(\theta) RZ(\phi)\) is equivalent to the original operation.
- Return type
tuple[float, float, float]
- sparse_matrix(wire_order=None)¶
Representation of the operator as a sparse matrix in the computational basis.
If
wire_order
is provided, the numerical representation considers the position of the operator’s wires in the global wire order. Otherwise, the wire order defaults to the operator’s wires.A
SparseMatrixUndefinedError
is raised if the sparse matrix representation has not been defined.See also
- Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s wires
- Returns
sparse matrix representation
- Return type
scipy.sparse._csr.csr_matrix
- terms()¶
Representation of the operator as a linear combination of other operators.
\[O = \sum_i c_i O_i\]A
TermsUndefinedError
is raised if no representation by terms is defined.- Returns
list of coefficients \(c_i\) and list of operations \(O_i\)
- Return type
tuple[list[tensor_like or float], list[Operation]]