qml.estimator.ops.SingleExcitation

class SingleExcitation(precision=None, wires=None)[source]

Bases: ResourceOperator

Resource class for the SingleExcitation gate.

Parameters:
  • precision (float, optional) – error threshold for Clifford + T decomposition of this operation

  • wires (Sequence[int], optional) – the wires the operation acts on

Resources:

The resources are obtained by decomposing the following matrix into fundamental gates.

\[\begin{split}U(\phi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\phi/2) & -\sin(\phi/2) & 0 \\ 0 & \sin(\phi/2) & \cos(\phi/2) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.\end{split}\]

This transformation can be expressed with the following decomposition:

0: ──T†──H───S─╭X──RZ-─╭X──S†──H──T─┤
1: ──T†──S†──H─╰●──RY──╰●──H───S──T─┤

See also

The corresponding PennyLane operation SingleExcitation.

Example

The resources for this operation are computed using:

>>> import pennylane.estimator as qre
>>> se = qre.SingleExcitation()
>>> print(qre.estimate(se))
--- Resources: ---
 Total wires: 2
    algorithmic wires: 2
    allocated wires: 0
         zero state: 0
         any state: 0
 Total gates : 108
  'T': 92,
  'CNOT': 2,
  'Z': 4,
  'S': 6,
  'Hadamard': 4

num_wires

resource_keys

resource_params

Returns a dictionary containing the minimal information needed to compute the resources.

num_wires = 2
resource_keys = {'precision'}
resource_params

Returns a dictionary containing the minimal information needed to compute the resources.

Returns:

A dictionary containing the resource parameters:
  • precision (float): error threshold for clifford plus T decomposition of this operation

Return type:

dict

resource_decomp([precision])

Returns a list of GateCount objects representing the operator's resources.

resource_rep([precision])

Returns a compressed representation containing only the parameters of the Operator that are needed to compute a resource estimation.

classmethod resource_decomp(precision=None)[source]

Returns a list of GateCount objects representing the operator’s resources.

Parameters:

precision (float, optional) – error threshold for clifford plus T decomposition of this operation

Resources:

The resources are obtained by decomposing the following matrix into fundamental gates.

\[\begin{split}U(\phi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\phi/2) & -\sin(\phi/2) & 0 \\ 0 & \sin(\phi/2) & \cos(\phi/2) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.\end{split}\]

The cost for implementing this transformation is given by:

0: ──T†──H───S─╭X──RZ-─╭X──S†──H──T─┤
1: ──T†──S†──H─╰●──RY──╰●──H───S──T─┤
Returns:

A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition.

Return type:

list[~.pennylane.estimator.resource_operator.GateCount]

classmethod resource_rep(precision=None)[source]

Returns a compressed representation containing only the parameters of the Operator that are needed to compute a resource estimation.

Parameters:

precision (float, optional) – error threshold for clifford plus T decomposition of this operation

Returns:

the operator in a compressed representation

Return type:

CompressedResourceOp

Contents

Using PennyLane

Release news

Development

API

Internals