Source code for pennylane.estimator.templates.subroutines

# Copyright 2025 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Resource operators for PennyLane subroutine templates."""

import math
from collections import defaultdict

import pennylane.estimator as qre
from pennylane import numpy as qnp
from pennylane.estimator.resource_operator import (
    CompressedResourceOp,
    GateCount,
    ResourceOperator,
    _dequeue,
    resource_rep,
)
from pennylane.estimator.wires_manager import Allocate, Deallocate
from pennylane.exceptions import ResourcesUndefinedError
from pennylane.wires import Wires, WiresLike

# pylint: disable=arguments-differ,too-many-arguments,unused-argument,super-init-not-called, signature-differs


[docs] class OutOfPlaceSquare(ResourceOperator): r"""Resource class for the OutofPlaceSquare gate. Args: register_size (int): the size of the input register wires (Sequence[int], None): the wires the operation acts on Resources: The resources are obtained from appendix G, lemma 7 in `PRX Quantum, 2, 040332 (2021) <https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.040332>`_. Specifically, the resources are given as :math:`(n - 1)^2` Toffoli gates, and :math:`n` CNOT gates, where :math:`n` is the size of the input register. **Example** The resources for this operation are computed using: >>> import pennylane.estimator as qre >>> out_square = qre.OutOfPlaceSquare(register_size=3) >>> print(qre.estimate(out_square)) --- Resources: --- Total wires: 9 algorithmic wires: 9 allocated wires: 0 zero state: 0 any state: 0 Total gates : 7 'Toffoli': 4, 'CNOT': 3 """ resource_keys = {"register_size"} def __init__(self, register_size: int, wires: WiresLike = None): self.register_size = register_size self.num_wires = 3 * register_size super().__init__(wires=wires) @property def resource_params(self): r"""Returns a dictionary containing the minimal information needed to compute the resources. Returns: dict: A dictionary containing the resource parameters: * register_size (int): the size of the input register """ return {"register_size": self.register_size}
[docs] @classmethod def resource_rep(cls, register_size: int): r"""Returns a compressed representation containing only the parameters of the Operator that are needed to compute a resource estimation. Args: register_size (int): the size of the input register Returns: :class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: the operator in a compressed representation """ num_wires = 3 * register_size return CompressedResourceOp(cls, num_wires, {"register_size": register_size})
[docs] @classmethod def resource_decomp(cls, register_size): r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: register_size (int): the size of the input register Resources: The resources are obtained from appendix G, lemma 7 in `PRX Quantum, 2, 040332 (2021) <https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.040332>`_. Specifically, the resources are given as :math:`(n - 1)^2` Toffoli gates, and :math:`n` CNOT gates. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ gate_lst = [] gate_lst.append(GateCount(resource_rep(qre.Toffoli), (register_size - 1) ** 2)) gate_lst.append(GateCount(resource_rep(qre.CNOT), register_size)) return gate_lst
[docs] class PhaseGradient(ResourceOperator): r"""Resource class for the PhaseGradient gate. This operation prepares the phase gradient state :math:`\frac{1}{\sqrt{2^b}} \cdot \sum_{k=0}^{2^b - 1} e^{-i2\pi \frac{k}{2^b}}\ket{k}`, where :math:`b` is the number of qubits. The equation is taken from page 4 of `C. Gidney, Quantum 2, 74, (2018) <https://quantum-journal.org/papers/q-2018-06-18-74/>`_. Args: num_wires (int | None): the number of wires to prepare in the phase gradient state wires (Sequence[int], None): the wires the operation acts on Resources: The phase gradient state is defined as an equal superposition of phase shifts where each shift is progressively more precise. This is achieved by applying Hadamard gates to each qubit and then applying Z-rotations to each qubit with progressively smaller rotation angle. The first three rotations can be compiled to a Z-gate, S-gate and a T-gate. **Example** The resources for this operation are computed using: >>> import pennylane.estimator as qre >>> phase_grad = qre.PhaseGradient(num_wires=5) >>> gate_set={"Z", "S", "T", "RZ", "Hadamard"} >>> print(qre.estimate(phase_grad, gate_set)) --- Resources: --- Total wires: 5 algorithmic wires: 5 allocated wires: 0 zero state: 0 any state: 0 Total gates : 10 'RZ': 2, 'T': 1, 'Z': 1, 'S': 1, 'Hadamard': 5 """ resource_keys = {"num_wires"} def __init__(self, num_wires: int | None = None, wires: WiresLike = None): if num_wires is None: if wires is None: raise ValueError("Must provide atleast one of `num_wires` and `wires`.") num_wires = len(wires) self.num_wires = num_wires super().__init__(wires=wires) @property def resource_params(self): r"""Returns a dictionary containing the minimal information needed to compute the resources. Returns: dict: A dictionary containing the resource parameters: * num_wires (int): the number of qubits to prepare in the phase gradient state """ return {"num_wires": self.num_wires}
[docs] @classmethod def resource_rep(cls, num_wires) -> CompressedResourceOp: r"""Returns a compressed representation containing only the parameters of the Operator that are needed to compute the resources. Args: num_wires (int): the number of qubits to prepare in the phase gradient state Returns: :class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: the operator in a compressed representation """ return CompressedResourceOp(cls, num_wires, {"num_wires": num_wires})
[docs] @classmethod def resource_decomp(cls, num_wires: int): r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: num_wires (int): the number of qubits to prepare in the phase gradient state Resources: The resources are obtained by construction. The phase gradient state is defined as an equal superposition of phase shifts where each shift is progressively more precise. This is achieved by applying Hadamard gates to each qubit and then applying Z-rotations to each qubit with progressively smaller rotation angle. The first three rotations can be compiled to a Z-gate, S-gate and a T-gate. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ gate_counts = [GateCount(resource_rep(qre.Hadamard), num_wires)] if num_wires > 0: gate_counts.append(GateCount(resource_rep(qre.Z))) if num_wires > 1: gate_counts.append(GateCount(resource_rep(qre.S))) if num_wires > 2: gate_counts.append(GateCount(resource_rep(qre.T))) if num_wires > 3: gate_counts.append(GateCount(resource_rep(qre.RZ), num_wires - 3)) return gate_counts
[docs] class OutMultiplier(ResourceOperator): r"""Resource class for the OutMultiplier gate. Args: a_num_wires (int): the size of the first input register b_num_wires (int): the size of the second input register wires (Sequence[int], None): the wires the operation acts on Resources: The resources are obtained from appendix G, lemma 10 in `PRX Quantum, 2, 040332 (2021) <https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.040332>`_. .. seealso:: The corresponding PennyLane operation :class:`~.pennylane.OutMultiplier`. **Example** The resources for this operation are computed using: >>> import pennylane.estimator as qre >>> out_mul = qre.OutMultiplier(4, 4) >>> print(qre.estimate(out_mul)) --- Resources: --- Total wires: 16 algorithmic wires: 16 allocated wires: 0 zero state: 0 any state: 0 Total gates : 70 'Toffoli': 14, 'CNOT': 14, 'Hadamard': 42 """ resource_keys = {"a_num_wires", "b_num_wires"} def __init__(self, a_num_wires: int, b_num_wires: int, wires: WiresLike = None) -> None: self.num_wires = a_num_wires + b_num_wires + 2 * max((a_num_wires, b_num_wires)) self.a_num_wires = a_num_wires self.b_num_wires = b_num_wires super().__init__(wires=wires) @property def resource_params(self): r"""Returns a dictionary containing the minimal information needed to compute the resources. Returns: dict: A dictionary containing the resource parameters: * a_num_wires (int): the size of the first input register * b_num_wires (int): the size of the second input register """ return {"a_num_wires": self.a_num_wires, "b_num_wires": self.b_num_wires}
[docs] @classmethod def resource_rep(cls, a_num_wires, b_num_wires) -> CompressedResourceOp: r"""Returns a compressed representation containing only the parameters of the Operator that are needed to compute a resource estimation. Args: a_num_wires (int): the size of the first input register b_num_wires (int): the size of the second input register Returns: :class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: the operator in a compressed representation """ num_wires = a_num_wires + b_num_wires + 2 * max((a_num_wires, b_num_wires)) return CompressedResourceOp( cls, num_wires, {"a_num_wires": a_num_wires, "b_num_wires": b_num_wires} )
[docs] @classmethod def resource_decomp(cls, a_num_wires, b_num_wires) -> list[GateCount]: r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: a_num_wires (int): the size of the first input register b_num_wires (int): the size of the second input register Resources: The resources are obtained from appendix G, lemma 10 in `PRX Quantum, 2, 040332 (2021) <https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.040332>`_. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ l = max(a_num_wires, b_num_wires) toff = resource_rep(qre.Toffoli) l_elbow = resource_rep(qre.TemporaryAND) r_elbow = resource_rep(qre.Adjoint, {"base_cmpr_op": l_elbow}) toff_count = 2 * a_num_wires * b_num_wires - l elbow_count = toff_count // 2 toff_count = toff_count - (elbow_count * 2) gate_lst = [ GateCount(l_elbow, elbow_count), GateCount(r_elbow, elbow_count), ] if toff_count: gate_lst.append(GateCount(toff)) return gate_lst
[docs] class SemiAdder(ResourceOperator): r"""Resource class for the SemiAdder gate. Args: max_register_size (int): the size of the larger of the two registers being added together wires (Sequence[int], None): the wires the operation acts on Resources: The resources are obtained from figures 1 and 2 in `Gidney (2018) <https://quantum-journal.org/papers/q-2018-06-18-74/pdf/>`_. .. seealso:: The corresponding PennyLane operation :class:`~.pennylane.SemiAdder`. **Example** The resources for this operation are computed using: >>> import pennylane.estimator as qre >>> semi_add = qre.SemiAdder(max_register_size=4) >>> print(qre.estimate(semi_add)) --- Resources: --- Total wires: 11 algorithmic wires: 8 allocated wires: 3 zero state: 3 any state: 0 Total gates : 30 'Toffoli': 3, 'CNOT': 18, 'Hadamard': 9 """ resource_keys = {"max_register_size"} def __init__(self, max_register_size: int, wires: WiresLike = None): self.max_register_size = max_register_size self.num_wires = 2 * max_register_size super().__init__(wires=wires) @property def resource_params(self): r"""Returns a dictionary containing the minimal information needed to compute the resources. Returns: dict: A dictionary containing the resource parameters: * max_register_size (int): the size of the larger of the two registers being added together """ return {"max_register_size": self.max_register_size}
[docs] @classmethod def resource_rep(cls, max_register_size): r"""Returns a compressed representation containing only the parameters of the Operator that are needed to compute the resources. Args: max_register_size (int): the size of the larger of the two registers being added together Returns: :class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: the operator in a compressed representation """ num_wires = 2 * max_register_size return CompressedResourceOp(cls, num_wires, {"max_register_size": max_register_size})
[docs] @classmethod def resource_decomp(cls, max_register_size: int): r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: max_register_size (int): the size of the larger of the two registers being added together Resources: The resources are obtained from figures 1 and 2 in `Gidney (2018) <https://quantum-journal.org/papers/q-2018-06-18-74/pdf/>`_. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ cnot = resource_rep(qre.CNOT) if max_register_size == 1: return [GateCount(cnot)] x = resource_rep(qre.X) toff = resource_rep(qre.Toffoli) if max_register_size == 2: return [GateCount(cnot, 2), GateCount(x, 2), GateCount(toff)] cnot_count = (6 * (max_register_size - 2)) + 3 elbow_count = max_register_size - 1 l_elbow = resource_rep(qre.TemporaryAND) r_elbow = resource_rep(qre.Adjoint, {"base_cmpr_op": l_elbow}) return [ Allocate(max_register_size - 1), GateCount(cnot, cnot_count), GateCount(l_elbow, elbow_count), GateCount(r_elbow, elbow_count), Deallocate(max_register_size - 1), ] # Obtained resource from Fig1 and Fig2 https://quantum-journal.org/papers/q-2018-06-18-74/pdf/
[docs] @classmethod def controlled_resource_decomp( cls, num_ctrl_wires: int, num_zero_ctrl: int, target_resource_params: dict ): r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: num_ctrl_wires (int): the number of qubits the operation is controlled on num_zero_ctrl (int): the number of control qubits, that are controlled when in the :math:`|0\rangle` state target_resource_params (dict): dictionary containing the size of the larger of the two registers being added together Resources: The resources are obtained from figure 4a in `Gidney (2018) <https://quantum-journal.org/papers/q-2018-06-18-74/pdf/>`_. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ max_register_size = target_resource_params["max_register_size"] if max_register_size <= 2: raise ResourcesUndefinedError gate_lst = [] if num_ctrl_wires > 1: mcx = resource_rep( qre.MultiControlledX, { "num_ctrl_wires": num_ctrl_wires, "num_zero_ctrl": num_zero_ctrl, }, ) gate_lst.append(Allocate(1)) gate_lst.append(GateCount(mcx, 2)) cnot_count = (7 * (max_register_size - 2)) + 3 elbow_count = 2 * (max_register_size - 1) x = resource_rep(qre.X) cnot = resource_rep(qre.CNOT) l_elbow = resource_rep(qre.TemporaryAND) r_elbow = resource_rep(qre.Adjoint, {"base_cmpr_op": l_elbow}) gate_lst.extend( [ Allocate(max_register_size - 1), GateCount(cnot, cnot_count), GateCount(l_elbow, elbow_count), GateCount(r_elbow, elbow_count), Deallocate(max_register_size - 1), ], ) if num_ctrl_wires > 1: gate_lst.append(Deallocate(1)) elif num_zero_ctrl > 0: gate_lst.append(GateCount(x, 2 * num_zero_ctrl)) return gate_lst
[docs] class ControlledSequence(ResourceOperator): r"""Resource class for the ControlledSequence gate. This operator represents a sequence of controlled gates, one for each control wire, with the base operator raised to decreasing powers of 2. Args: base (:class:`~.pennylane.estimator.resource_operator.ResourceOperator`): The operator to repeatedly apply in a controlled fashion. num_control_wires (int): the number of controlled wires to run the sequence over wires (Sequence[int], None): the wires the operation acts on Resources: The resources are obtained as a direct result of the definition of the operator: .. code-block:: bash 0: ──╭●───────────────┤ 1: ──│────╭●──────────┤ 2: ──│────│────╭●─────┤ t: ──╰U⁴──╰U²──╰U¹────┤ .. seealso:: The associated PennyLane operation :class:`~.pennylane.ControlledSequence` **Example** The resources for this operation are computed using: >>> import pennylane.estimator as qre >>> ctrl_seq = qre.ControlledSequence( ... base = qre.RX(), ... num_control_wires = 3, ... ) >>> gate_set={"CRX"} >>> print(qre.estimate(ctrl_seq, gate_set)) --- Resources: --- Total wires: 4 algorithmic wires: 4 allocated wires: 0 zero state: 0 any state: 0 Total gates : 3 'CRX': 3 """ resource_keys = {"base_cmpr_op", "num_ctrl_wires"} def __init__( self, base: ResourceOperator, num_control_wires: int, wires: WiresLike = None ) -> None: _dequeue(op_to_remove=base) self.queue() base_cmpr_op = base.resource_rep_from_op() self.base_cmpr_op = base_cmpr_op self.num_ctrl_wires = num_control_wires self.num_wires = num_control_wires + base_cmpr_op.num_wires if wires: self.wires = Wires(wires) if base_wires := base.wires: self.wires = Wires.all_wires([self.wires, base_wires]) if len(self.wires) != self.num_wires: raise ValueError(f"Expected {self.num_wires} wires, got {len(Wires(wires))}.") else: self.wires = None @property def resource_params(self): r"""Returns a dictionary containing the minimal information needed to compute the resources. Returns: dict: A dictionary containing the resource parameters: * base_cmpr_op (:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`): A compressed resource operator, corresponding to the operator that we will be applying controlled powers of. * num_ctrl_wires (int): the number of controlled wires to run the sequence over """ return {"base_cmpr_op": self.base_cmpr_op, "num_ctrl_wires": self.num_ctrl_wires}
[docs] @classmethod def resource_rep( cls, base_cmpr_op: CompressedResourceOp, num_ctrl_wires: int ) -> CompressedResourceOp: r"""Returns a compressed representation containing only the parameters of the Operator that are needed to compute the resources. Args: base_cmpr_op (:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`): A compressed resource operator, corresponding to the operator that we will be applying controlled powers of. num_ctrl_wires (int): the number of controlled wires to run the sequence over Returns: :class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: the operator in a compressed representation """ params = {"base_cmpr_op": base_cmpr_op, "num_ctrl_wires": num_ctrl_wires} num_wires = num_ctrl_wires + base_cmpr_op.num_wires return CompressedResourceOp(cls, num_wires, params)
[docs] @classmethod def resource_decomp(cls, base_cmpr_op, num_ctrl_wires): r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: base_cmpr_op (:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`): A compressed resource operator, corresponding to the operator that we will be applying controlled powers of. num_ctrl_wires (int): the number of controlled wires to run the sequence over Resources: The resources are obtained as a direct result of the definition of the operator: .. code-block:: bash 0: ──╭●───────────────┤ 1: ──│────╭●──────────┤ 2: ──│────│────╭●─────┤ t: ──╰U⁴──╰U²──╰U¹────┤ Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ gate_counts = [] base_op = base_cmpr_op if base_cmpr_op.op_type == qre.ChangeOpBasis: base_op = base_cmpr_op.params["cmpr_target_op"] compute_op = base_cmpr_op.params["cmpr_compute_op"] uncompute_op = base_cmpr_op.params["cmpr_uncompute_op"] gate_counts.append(GateCount(compute_op)) for z in range(num_ctrl_wires): ctrl_pow_u = qre.Controlled.resource_rep( qre.Pow.resource_rep(base_op, 2**z), num_ctrl_wires=1, num_zero_ctrl=0, ) gate_counts.append(GateCount(ctrl_pow_u)) if base_cmpr_op.op_type == qre.ChangeOpBasis: gate_counts.append(GateCount(uncompute_op)) return gate_counts
[docs] class QPE(ResourceOperator): r"""Resource class for QuantumPhaseEstimation (QPE). Args: base (:class:`~.pennylane.estimator.resource_operator.ResourceOperator`): the phase estimation operator num_estimation_wires (int): the number of wires used for measuring out the phase adj_qft_op (:class:`~.pennylane.estimator.resource_operator.ResourceOperator` | None): An optional argument to set the subroutine used to perform the adjoint QFT operation. wires (Sequence[int], None): the wires the operation acts on Resources: The resources are obtained from the standard decomposition of QPE as presented in (Section 5.2) `Nielsen, M.A. and Chuang, I.L. (2011) Quantum Computation and Quantum Information <https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview>`_. .. seealso:: The corresponding PennyLane operation :class:`~.pennylane.QuantumPhaseEstimation`. **Example** The resources for this operation are computed using: >>> import pennylane.estimator as qre >>> gate_set = {"Hadamard", "Adjoint(QFT(5))", "CRX"} >>> qpe = qre.QPE(qre.RX(precision=1e-3), 5) >>> print(qre.estimate(qpe, gate_set)) --- Resources: --- Total wires: 6 algorithmic wires: 6 allocated wires: 0 zero state: 0 any state: 0 Total gates : 11 'CRX': 5, 'Adjoint(QFT(5))': 1, 'Hadamard': 5 .. details:: :title: Usage Details Additionally, we can customize the implementation of the QFT operator we wish to use within the textbook QPE algorithm. This allows users to optimize the implementation of QPE by using more efficient implementations of the QFT. For example, consider the cost using the default :class:`~.pennylane.estimator.templates.QFT` implementation below: >>> import pennylane.estimator as qre >>> qpe = qre.QPE(qre.RX(precision=1e-3), 5, adj_qft_op=None) >>> print(qre.estimate(qpe)) --- Resources: --- Total wires: 6 algorithmic wires: 6 allocated wires: 0 zero state: 0 any state: 0 Total gates : 1.586E+3 'T': 1.530E+3, 'CNOT': 36, 'Hadamard': 20 Now we use the :class:`~.pennylane.estimator.templates.AQFT`: >>> aqft = qre.AQFT(order=3, num_wires=5) >>> adj_aqft = qre.Adjoint(aqft) >>> qpe = qre.QPE(qre.RX(precision=1e-3), 5, adj_qft_op=adj_aqft) >>> print(qre.estimate(qpe)) --- Resources: --- Total wires: 8 algorithmic wires: 6 allocated wires: 2 zero state: 2 any state: 0 Total gates : 321 'Toffoli': 7, 'T': 222, 'CNOT': 34, 'X': 4, 'Z': 8, 'S': 8, 'Hadamard': 38 """ resource_keys = {"base_cmpr_op", "num_estimation_wires", "adj_qft_cmpr_op"} def __init__( self, base: ResourceOperator, num_estimation_wires: int, adj_qft_op: ResourceOperator | None = None, wires: WiresLike | None = None, ): remove_ops = [base, adj_qft_op] if adj_qft_op is not None else [base] _dequeue(remove_ops) self.queue() base_cmpr_op = base.resource_rep_from_op() adj_qft_cmpr_op = None if adj_qft_op is None else adj_qft_op.resource_rep_from_op() self.base_cmpr_op = base_cmpr_op self.adj_qft_cmpr_op = adj_qft_cmpr_op self.num_estimation_wires = num_estimation_wires self.num_wires = self.num_estimation_wires + base_cmpr_op.num_wires if wires: self.wires = Wires(wires) if base_wires := base.wires: self.wires = Wires.all_wires([self.wires, base_wires]) if len(self.wires) != self.num_wires: raise ValueError(f"Expected {self.num_wires} wires, got {len(Wires(wires))}.") else: self.wires = None @property def resource_params(self) -> dict: r"""Returns a dictionary containing the minimal information needed to compute the resources. Returns: dict: A dictionary containing the resource parameters: * base_cmpr_op (:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`): A compressed resource operator, corresponding to the phase estimation operator. * num_estimation_wires (int): the number of wires used for measuring out the phase * adj_qft_cmpr_op (:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp` | None]): An optional compressed resource operator, corresponding to the adjoint QFT routine. If :code:`None`, the default :class:`~.pennylane.estimator.templates.subroutines.QFT` will be used. """ return { "base_cmpr_op": self.base_cmpr_op, "num_estimation_wires": self.num_estimation_wires, "adj_qft_cmpr_op": self.adj_qft_cmpr_op, }
[docs] @classmethod def resource_rep( cls, base_cmpr_op: CompressedResourceOp, num_estimation_wires: int, adj_qft_cmpr_op: CompressedResourceOp = None, ) -> CompressedResourceOp: r"""Returns a compressed representation containing only the parameters of the Operator that are needed to compute the resources. Args: base_cmpr_op (:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`): A compressed resource operator, corresponding to the phase estimation operator. num_estimation_wires (int): the number of wires used for measuring out the phase adj_qft_cmpr_op (:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp` | None): An optional compressed resource operator, corresponding to the adjoint QFT routine. If :code:`None`, the default :class:`~.pennylane.estimator.templates.subroutines.QFT` will be used. Returns: :class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: the operator in a compressed representation """ params = { "base_cmpr_op": base_cmpr_op, "num_estimation_wires": num_estimation_wires, "adj_qft_cmpr_op": adj_qft_cmpr_op, } num_wires = num_estimation_wires + base_cmpr_op.num_wires return CompressedResourceOp(cls, num_wires, params)
[docs] @classmethod def resource_decomp( cls, base_cmpr_op: CompressedResourceOp, num_estimation_wires: int, adj_qft_cmpr_op: CompressedResourceOp | None = None, ): r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: base_cmpr_op (:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`): A compressed resource operator, corresponding to the phase estimation operator. num_estimation_wires (int): the number of wires used for measuring out the phase adj_qft_cmpr_op (:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp` | None): An optional compressed resource operator, corresponding to the adjoint QFT routine. If :code:`None`, the default :class:`~.pennylane.estimator.templates.subroutines.QFT` will be used. Resources: The resources are obtained from the standard decomposition of QPE as presented in (section 5.2) `Nielsen, M.A. and Chuang, I.L. (2011) Quantum Computation and Quantum Information <https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview>`_. """ hadamard = resource_rep(qre.Hadamard) ctrl_op = ControlledSequence.resource_rep(base_cmpr_op, num_estimation_wires) if adj_qft_cmpr_op is None: adj_qft_cmpr_op = resource_rep( qre.Adjoint, { "base_cmpr_op": resource_rep(QFT, {"num_wires": num_estimation_wires}), }, ) return [ GateCount(hadamard, num_estimation_wires), GateCount(ctrl_op), GateCount(adj_qft_cmpr_op), ]
[docs] @staticmethod def tracking_name( base_cmpr_op: CompressedResourceOp, num_estimation_wires: int, adj_qft_cmpr_op: CompressedResourceOp | None = None, ) -> str: r"""Returns the tracking name built with the operator's parameters.""" base_name = base_cmpr_op.name adj_qft_name = None if adj_qft_cmpr_op is None else adj_qft_cmpr_op.name return f"QPE({base_name}, {num_estimation_wires}, adj_qft={adj_qft_name})"
[docs] class IterativeQPE(ResourceOperator): r"""Resource class for Iterative Quantum Phase Estimation (IQPE). Args: base (:class:`~.pennylane.estimator.resource_operator.ResourceOperator`): the phase estimation operator num_iter (int): the number of mid-circuit measurements performed to read out the phase Resources: The resources are obtained following the construction from `arXiv:0610214v3 <https://arxiv.org/abs/quant-ph/0610214v3>`_. .. seealso:: :func:`~.pennylane.iterative_qpe` **Example** The resources for this operation are computed using: >>> import pennylane.estimator as qre >>> gate_set = {"Hadamard", "CRX", "PhaseShift"} >>> iqpe = qre.IterativeQPE(qre.RX(), 5) >>> print(qre.estimate(iqpe, gate_set)) --- Resources: --- Total wires: 2 algorithmic wires: 1 allocated wires: 1 zero state: 1 any state: 0 Total gates : 25 'CRX': 5, 'PhaseShift': 10, 'Hadamard': 10 """ resource_keys = {"base_cmpr_op", "num_iter"} def __init__(self, base: ResourceOperator, num_iter: int): _dequeue(base) self.queue() self.base_cmpr_op = base.resource_rep_from_op() self.num_iter = num_iter self.wires = base.wires self.num_wires = self.base_cmpr_op.num_wires @property def resource_params(self): r"""Returns a dictionary containing the minimal information needed to compute the resources. Returns: dict: A dictionary containing the resource parameters: * base_cmpr_op (:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`): A compressed resource operator, corresponding to the phase estimation operator. * num_iter (int): the number of mid-circuit measurements made to read out the phase """ return {"base_cmpr_op": self.base_cmpr_op, "num_iter": self.num_iter}
[docs] @classmethod def resource_rep( cls, base_cmpr_op: CompressedResourceOp, num_iter: int ) -> CompressedResourceOp: r"""Returns a compressed representation containing only the parameters of the Operator that are needed to compute the resources. Args: base_cmpr_op (:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`): A compressed resource operator, corresponding to the phase estimation operator. num_iter (int): the number of mid-circuit measurements made to read out the phase Returns: :class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: the operator in a compressed representation """ num_wires = base_cmpr_op.num_wires return CompressedResourceOp( cls, num_wires, {"base_cmpr_op": base_cmpr_op, "num_iter": num_iter} )
[docs] @classmethod def resource_decomp(cls, base_cmpr_op, num_iter): r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: base_cmpr_op (:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`): A compressed resource operator, corresponding to the phase estimation operator. num_iter (int): the number of mid-circuit measurements made to read out the phase Resources: The resources are obtained following the construction from `arXiv:0610214v3 <https://arxiv.org/abs/quant-ph/0610214v3>`_. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ gate_counts = [ GateCount(resource_rep(qre.Hadamard), 2 * num_iter), Allocate(1), ] # Here we want to use this particular decomposition, not any random one the user might override gate_counts += ControlledSequence.resource_decomp(base_cmpr_op, num_iter) num_phase_gates = num_iter * (num_iter - 1) // 2 gate_counts.append( GateCount(qre.PhaseShift.resource_rep(), num_phase_gates) ) # Classically controlled PS gate_counts.append(Deallocate(1)) return gate_counts
[docs] class QFT(ResourceOperator): r"""Resource class for QFT. Args: num_wires (int | None): the number of qubits the operation acts upon wires (Sequence[int], None): the wires the operation acts on Resources: The resources are obtained from the standard decomposition of QFT as presented in (chapter 5) `Nielsen, M.A. and Chuang, I.L. (2011) Quantum Computation and Quantum Information <https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview>`_. .. seealso:: The corresponding PennyLane operation :class:`~.pennylane.QFT`. **Example** The resources for this operation are computed using: >>> import pennylane.estimator as qre >>> qft = qre.QFT(3) >>> gate_set = {"SWAP", "Hadamard", "ControlledPhaseShift"} >>> print(qre.estimate(qft, gate_set)) --- Resources: --- Total wires: 3 algorithmic wires: 3 allocated wires: 0 zero state: 0 any state: 0 Total gates : 7 'SWAP': 1, 'ControlledPhaseShift': 3, 'Hadamard': 3 .. details:: :title: Usage Details This operation provides an alternative decomposition method when an appropriately sized phase gradient state is available. This decomposition can be used as a custom decomposition using the operation's ``phase_grad_resource_decomp`` method and the :class:`~.pennylane.estimator.resource_config.ResourceConfig` class. See the following example for more details. >>> import pennylane.estimator as qre >>> config = qre.ResourceConfig() >>> config.set_decomp(qre.QFT, qre.QFT.phase_grad_resource_decomp) >>> print(qre.estimate(qre.QFT(3), config=config)) --- Resources: --- Total wires: 4 algorithmic wires: 3 allocated wires: 1 zero state: 1 any state: 0 Total gates : 17 'Toffoli': 5, 'CNOT': 6, 'Hadamard': 6 """ resource_keys = {"num_wires"} def __init__(self, num_wires: int | None = None, wires: WiresLike = None) -> None: if num_wires is None: if wires is None: raise ValueError("Must provide atleast one of `num_wires` and `wires`.") num_wires = len(wires) self.num_wires = num_wires super().__init__(wires=wires) @property def resource_params(self) -> dict: r"""Returns a dictionary containing the minimal information needed to compute the resources. Returns: dict: A dictionary containing the resource parameters: * num_wires (int): the number of qubits the operation acts upon """ return {"num_wires": self.num_wires}
[docs] @classmethod def resource_rep(cls, num_wires) -> CompressedResourceOp: r"""Returns a compressed representation containing only the parameters of the Operator that are needed to compute the resources. Args: num_wires (int): the number of qubits the operation acts upon Returns: :class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: the operator in a compressed representation """ params = {"num_wires": num_wires} return CompressedResourceOp(cls, num_wires, params)
[docs] @classmethod def resource_decomp(cls, num_wires) -> list[GateCount]: r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: num_wires (int): the number of qubits the operation acts upon Resources: The resources are obtained from the standard decomposition of QFT as presented in (Chapter 5) `Nielsen, M.A. and Chuang, I.L. (2011) Quantum Computation and Quantum Information <https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview>`_. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ hadamard = resource_rep(qre.Hadamard) swap = resource_rep(qre.SWAP) ctrl_phase_shift = resource_rep(qre.ControlledPhaseShift) if num_wires == 1: return [ GateCount(hadamard), ] return [ GateCount(hadamard, num_wires), GateCount(swap, num_wires // 2), GateCount(ctrl_phase_shift, num_wires * (num_wires - 1) // 2), ]
[docs] @classmethod def phase_grad_resource_decomp(cls, num_wires) -> list[GateCount]: r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. .. note:: This decomposition assumes an appropriately sized phase gradient state is available. Users should ensure the cost of constructing such a state has been accounted for. See also :class:`~.pennylane.estimator.templates.PhaseGradient`. Args: num_wires (int): the number of qubits the operation acts upon Resources: The resources are obtained as presented in the article `Turning Gradients into Additions into QFTs <https://algassert.com/post/1620>`_. Specifically, following the figure titled "8 qubit Quantum Fourier Transform with gradient shifts" Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ hadamard = resource_rep(qre.Hadamard) swap = resource_rep(qre.SWAP) if num_wires == 1: return [GateCount(hadamard)] gate_types = [ GateCount(hadamard, num_wires), GateCount(swap, num_wires // 2), ] for size_reg in range(1, num_wires): ctrl_add = qre.Controlled.resource_rep( qre.SemiAdder.resource_rep(max_register_size=size_reg), num_ctrl_wires=1, num_zero_ctrl=0, ) gate_types.append(GateCount(ctrl_add)) return gate_types
[docs] @staticmethod def tracking_name(num_wires) -> str: r"""Returns the tracking name built with the operator's parameters.""" return f"QFT({num_wires})"
[docs] class AQFT(ResourceOperator): r"""Resource class for the Approximate QFT. .. note:: This operation assumes an appropriately sized phase gradient state is available. Users should ensure the cost of constructing such a state has been accounted for. See also :class:`~.pennylane.estimator.templates.PhaseGradient`. Args: order (int): the maximum number of controlled phase shifts per qubit to which the operation is truncated num_wires (int | None): the number of qubits the operation acts upon wires (Sequence[int], None): the wires the operation acts on Resources: The resources are obtained from (Fig. 4) of `arXiv:1803.04933, <https://arxiv.org/abs/1803.04933>`_ excluding the allocation and instantiation of the phase gradient state. The phased :code:`Toffoli` gates and the classical measure-and-reset (Fig. 2) are accounted for as :code:`TemporaryAND` operations. .. seealso:: The corresponding PennyLane operation :class:`~.pennylane.AQFT`. **Example** The resources for this operation are computed using: >>> import pennylane.estimator as qre >>> aqft = qre.AQFT(order=2, num_wires=3) >>> gate_set = {"SWAP", "Hadamard", "T", "CNOT"} >>> print(qre.estimate(aqft, gate_set)) --- Resources: --- Total wires: 4 algorithmic wires: 3 allocated wires: 1 zero state: 1 any state: 0 Total gates : 57 'SWAP': 1, 'T': 40, 'CNOT': 9, 'Hadamard': 7 """ resource_keys = {"order, num_wires"} def __init__(self, order: int, num_wires: int | None = None, wires: WiresLike = None) -> None: if num_wires is None: if wires is None: raise ValueError("Must provide atleast one of `num_wires` and `wires`.") num_wires = len(wires) self.order = order self.num_wires = num_wires if order < 1: raise ValueError("Order must be a positive integer greater than 0.") super().__init__(wires=wires) @property def resource_params(self) -> dict: r"""Returns a dictionary containing the minimal information needed to compute the resources. Returns: dict: A dictionary containing the resource parameters: * order (int): the maximum number of controlled phase shifts to which the operation is truncated * num_wires (int): the number of qubits the operation acts upon """ return {"order": self.order, "num_wires": self.num_wires}
[docs] @classmethod def resource_rep(cls, order, num_wires) -> CompressedResourceOp: r"""Returns a compressed representation containing only the parameters of the Operator that are needed to compute the resources. Args: order (int): the maximum number of controlled phase shifts to truncate num_wires (int): the number of qubits the operation acts upon Returns: :class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: the operator in a compressed representation """ params = {"order": order, "num_wires": num_wires} return CompressedResourceOp(cls, num_wires, params)
[docs] @classmethod def resource_decomp(cls, order, num_wires) -> list[GateCount]: r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: order (int): the maximum number of controlled phase shifts to which the operation is truncated num_wires (int): the number of qubits the operation acts upon Resources: The resources are obtained from (Fig. 4) `arXiv:1803.04933 <https://arxiv.org/abs/1803.04933>`_ excluding the allocation and instantiation of the phase gradient state. The phased Toffoli gates and the classical measure-and-reset (Fig. 2) are accounted for as :code:`TemporaryAND` operations. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ hadamard = resource_rep(qre.Hadamard) swap = resource_rep(qre.SWAP) cs = qre.Controlled.resource_rep( base_cmpr_op=resource_rep(qre.S), num_ctrl_wires=1, num_zero_ctrl=0, ) if order >= num_wires: order = num_wires - 1 gate_types = [ GateCount(hadamard, num_wires), ] if order > 1 and num_wires > 1: gate_types.append(GateCount(cs, num_wires - 1)) for index in range(2, order): addition_reg_size = index - 1 temp_and = resource_rep(qre.TemporaryAND) temp_and_dag = qre.Adjoint.resource_rep(temp_and) in_place_add = qre.SemiAdder.resource_rep(addition_reg_size) cost_iter = [ Allocate(addition_reg_size), GateCount(temp_and, addition_reg_size), GateCount(in_place_add), GateCount(hadamard), GateCount(temp_and_dag, addition_reg_size), Deallocate(addition_reg_size), ] gate_types.extend(cost_iter) addition_reg_size = order - 1 repetitions = num_wires - order temp_and = resource_rep(qre.TemporaryAND) temp_and_dag = qre.Adjoint.resource_rep(temp_and) in_place_add = qre.SemiAdder.resource_rep(addition_reg_size) cost_iter = [ Allocate(addition_reg_size), GateCount(temp_and, addition_reg_size * repetitions), GateCount(in_place_add, repetitions), GateCount(hadamard, repetitions), GateCount(temp_and_dag, addition_reg_size * repetitions), Deallocate(addition_reg_size), ] gate_types.extend(cost_iter) gate_types.append(GateCount(swap, num_wires // 2)) return gate_types
[docs] @staticmethod def tracking_name(order, num_wires) -> str: r"""Returns the tracking name built with the operator's parameters.""" return f"AQFT({order}, {num_wires})"
[docs] class BasisRotation(ResourceOperator): r"""Resource class for the BasisRotation gate. Args: dim (int | None): The dimensions of the input matrix specifying the basis transformation. This is equivalent to the number of rows or columns of the matrix. wires (Sequence[int], None): the wires the operation acts on, should be equal to the dimension Resources: The resources are obtained from the construction scheme given in `Optica, 3, 1460 (2016) <https://opg.optica.org/optica/fulltext.cfm?uri=optica-3-12-1460&id=355743>`_. Specifically, the resources are given as :math:`N \times (N - 1) / 2` instances of the ``SingleExcitation`` gate, and :math:`N \times (1 + (N - 1) / 2)` instances of the ``PhaseShift`` gate, where :math:`N` is the dimensions of the input matrix. .. seealso:: The corresponding PennyLane operation :class:`~.pennylane.BasisRotation`. **Example** The resources for this operation are computed using: >>> import pennylane.estimator as qre >>> basis_rot = qre.BasisRotation(dim = 5) >>> print(qre.estimate(basis_rot)) --- Resources: --- Total wires: 5 algorithmic wires: 5 allocated wires: 0 zero state: 0 any state: 0 Total gates : 1.740E+3 'T': 1.580E+3, 'CNOT': 20, 'Z': 40, 'S': 60, 'Hadamard': 40 """ resource_keys = {"dim"} def __init__(self, dim: int | None = None, wires: WiresLike = None): if dim is None: if wires is None: raise ValueError("Must provide atleast one of `dim` and `wires`.") dim = len(wires) self.num_wires = dim super().__init__(wires=wires)
[docs] @classmethod def resource_decomp(cls, dim) -> list[GateCount]: r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: dim (int): The dimensions of the input :code:`unitary_matrix`. This is computed as the number of columns of the matrix. Resources: The resources are obtained from the construction scheme given in `Optica, 3, 1460 (2016) <https://opg.optica.org/optica/fulltext.cfm?uri=optica-3-12-1460&id=355743>`_. Specifically, the resources are given as :math:`N * (N - 1) / 2` instances of the ``SingleExcitation`` gate, and :math:`N * (1 + (N - 1) / 2)` instances of the ``PhaseShift`` gate, where :math:`N` is the dimensions of the input matrix. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ phase_shift = resource_rep(qre.PhaseShift) single_excitation = resource_rep(qre.SingleExcitation) se_count = dim * (dim - 1) // 2 ps_count = dim + se_count return [GateCount(phase_shift, ps_count), GateCount(single_excitation, se_count)]
@property def resource_params(self) -> dict: r"""Returns a dictionary containing the minimal information needed to compute the resources. Returns: dict: A dictionary containing the resource parameters: * dim (int): The dimensions of the input :code:`unitary_matrix`. This is computed as the number of columns of the matrix. """ return {"dim": self.num_wires}
[docs] @classmethod def resource_rep(cls, dim) -> CompressedResourceOp: r"""Returns a compressed representation containing only the parameters of the Operator that are needed to compute a resource estimation. Args: dim (int): The dimensions of the input :code:`unitary_matrix`. This is computed as the number of columns of the matrix. Returns: :class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: the operator in a compressed representation """ params = {"dim": dim} num_wires = dim return CompressedResourceOp(cls, num_wires, params)
[docs] @staticmethod def tracking_name(dim) -> str: r"""Returns the tracking name built with the operator's parameters.""" return f"BasisRotation({dim})"
[docs] class Select(ResourceOperator): r"""Resource class for the Select gate. Args: ops (list[:class:`~.pennylane.estimator.resource_operator.ResourceOperator`]): the set of operations to select over wires (Sequence[int], None): The wires the operation acts on. If :code:`ops` provide wire labels, then this is just the set of control wire labels. Otherwise, it also includes the target wire labels of the selected operators. Resources: The resources are based on the analysis in `Babbush et al. (2018) <https://arxiv.org/pdf/1805.03662>`_ section III.A, 'Unary Iteration and Indexed Operations'. See Figures 4, 6, and 7. .. seealso:: The corresponding PennyLane operation :class:`~.pennylane.Select`. **Example** The resources for this operation are computed using: >>> import pennylane.estimator as qre >>> ops = [qre.X(), qre.Y(), qre.Z()] >>> select_op = qre.Select(ops=ops) >>> print(qre.estimate(select_op)) --- Resources: --- Total wires: 4 algorithmic wires: 3 allocated wires: 1 zero state: 1 any state: 0 Total gates : 24 'Toffoli': 2, 'CNOT': 7, 'X': 4, 'Z': 1, 'S': 2, 'Hadamard': 8 """ resource_keys = {"num_wires", "cmpr_ops"} def __init__(self, ops: list, wires: WiresLike = None) -> None: _dequeue(op_to_remove=ops) self.queue() num_select_ops = len(ops) num_ctrl_wires = math.ceil(math.log2(num_select_ops)) try: cmpr_ops = tuple(op.resource_rep_from_op() for op in ops) self.cmpr_ops = cmpr_ops except AttributeError as error: raise ValueError( "All factors of the Select must be instances of `ResourceOperator` in order to obtain resources." ) from error ops_wires = Wires.all_wires([op.wires for op in ops if op.wires is not None]) fewest_unique_wires = max(op.num_wires for op in cmpr_ops) minimum_num_wires = max(fewest_unique_wires, len(ops_wires)) + num_ctrl_wires if wires: self.wires = Wires.all_wires([Wires(wires), ops_wires]) if len(self.wires) < minimum_num_wires: raise ValueError( f"Expected at least {minimum_num_wires} wires ({num_ctrl_wires} control + {fewest_unique_wires} target), got {len(Wires(wires))}." ) self.num_wires = len(self.wires) else: self.wires = None self.num_wires = minimum_num_wires
[docs] @classmethod def resource_decomp(cls, cmpr_ops, num_wires): # pylint: disable=unused-argument r"""The resources for a select implementation taking advantage of the unary iterator trick. Args: cmpr_ops (list[:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`]): The list of operators, in the compressed representation, to be applied according to the selected qubits. num_wires (int): The number of wires the operation acts on. This is a sum of the control wires (:math:`\lceil(log_{2}(N))\rceil`) required and the number wires targeted by the :code:`ops`. Resources: The resources are based on the analysis in `Babbush et al. (2018) <https://arxiv.org/pdf/1805.03662>`_ section III.A, 'Unary Iteration and Indexed Operations'. See Figures 4, 6, and 7. Note: This implementation assumes we have access to :math:`n - 1` additional work qubits, where :math:`n = \left\lceil log_{2}(N) \right\rceil` and :math:`N` is the number of batches of unitaries to select. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ gate_types = [] x = qre.X.resource_rep() cnot = qre.CNOT.resource_rep() l_elbow = resource_rep(qre.TemporaryAND) r_elbow = resource_rep(qre.Adjoint, {"base_cmpr_op": l_elbow}) num_ops = len(cmpr_ops) work_qubits = math.ceil(math.log2(num_ops)) - 1 gate_types.append(Allocate(work_qubits)) for cmp_rep in cmpr_ops: ctrl_op = qre.Controlled.resource_rep(cmp_rep, 1, 0) gate_types.append(GateCount(ctrl_op)) gate_types.append(GateCount(x, 2 * (num_ops - 1))) # conjugate 0 controlled toffolis gate_types.append(GateCount(cnot, num_ops - 1)) gate_types.append(GateCount(l_elbow, num_ops - 1)) gate_types.append(GateCount(r_elbow, num_ops - 1)) gate_types.append(Deallocate(work_qubits)) return gate_types
[docs] @staticmethod def textbook_resources(cmpr_ops) -> list[GateCount]: r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: cmpr_ops (list[:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`]): The list of operators, in the compressed representation, to be applied according to the selected qubits. num_wires (int): The number of wires the operation acts on. This is a sum of the control wires (:math:`\lceil(log_{2}(N))\rceil`) required and the number wires targeted by the :code:`ops`. Resources: The resources correspond directly to the definition of the operation. Specifically, for each operator in :code:`cmpr_ops`, the cost is given as a controlled version of the operator controlled on the associated bitstring. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ gate_types = defaultdict(int) x = qre.X.resource_rep() num_ops = len(cmpr_ops) num_ctrl_wires = int(qnp.ceil(qnp.log2(num_ops))) num_total_ctrl_possibilities = 2**num_ctrl_wires # 2^n num_zero_controls = num_total_ctrl_possibilities // 2 gate_types[x] = num_zero_controls * 2 # conjugate 0 controls for cmp_rep in cmpr_ops: ctrl_op = qre.Controlled.resource_rep( cmp_rep, num_ctrl_wires, 0, ) gate_types[ctrl_op] += 1 return gate_types
@property def resource_params(self) -> dict: r"""Returns a dictionary containing the minimal information needed to compute the resources. Returns: dict: A dictionary containing the resource parameters: * cmpr_ops (list[:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`]): The list of operators, in the compressed representation, to be applied according to the selected qubits. * num_wires (int): The number of wires the operation acts on. This is a sum of the control wires (:math:`\lceil(log_{2}(N))\rceil`) required and the number wires targeted by the :code:`ops`. """ return {"cmpr_ops": self.cmpr_ops, "num_wires": self.num_wires}
[docs] @classmethod def resource_rep(cls, cmpr_ops, num_wires: WiresLike = None) -> CompressedResourceOp: r"""Returns a compressed representation containing only the parameters of the Operator that are needed to compute a resource estimation. Args: cmpr_ops (list[:class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`]): The list of operators, in the compressed representation, to be applied according to the selected qubits. num_wires (int): An optional parameter representing the number of wires the operation acts on. This is a sum of the control wires (:math:`\lceil(log_{2}(N))\rceil`) required and the number of wires targeted by the :code:`ops`. Returns: :class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: the operator in a compressed representation """ num_ctrl_wires = math.ceil(math.log2(len(cmpr_ops))) fewest_unique_wires = max(op.num_wires for op in cmpr_ops) num_wires = num_wires or fewest_unique_wires + num_ctrl_wires params = {"cmpr_ops": cmpr_ops, "num_wires": num_wires} return CompressedResourceOp(cls, num_wires, params)
[docs] class QROM(ResourceOperator): r"""Resource class for the QROM template. Args: num_bitstrings (int): the number of bitstrings that are to be encoded size_bitstring (int): the length of each bitstring num_bit_flips (int, optional): The total number of :math:`1`'s in the dataset. Defaults to :code:`(num_bitstrings * size_bitstring) // 2`, which is half the dataset. restored (bool, optional): Determine if allocated qubits should be reset after the computation (at the cost of higher gate counts). Defaults to :code:`True`. select_swap_depth (int | None): A parameter :math:`\lambda` that determines if data will be loaded in parallel by adding more rows following Figure 1.C of `Low et al. (2024) <https://arxiv.org/pdf/1812.00954>`_. Can be :code:`None`, :code:`1` or a positive integer power of two. Defaults to :code:`None`, which internally determines the optimal depth. wires (Sequence[int], None): The wires the operation acts on (control and target). Excluding any additional qubits allocated during the decomposition (e.g select-swap wires). Resources: The resources for QROM are taken from the following two papers: `Low et al. (2024) <https://arxiv.org/pdf/1812.00954>`_ (Figure 1.C) for :code:`restored = False` and `Berry et al. (2019) <https://arxiv.org/pdf/1902.02134>`_ (Figure 4) for :code:`restored = True`. .. seealso:: The associated PennyLane operation :class:`~.pennylane.QROM` **Example** The resources for this operation are computed using: >>> import pennylane.estimator as qre >>> qrom = qre.QROM( ... num_bitstrings=10, ... size_bitstring=4, ... ) >>> print(qre.estimate(qrom)) --- Resources: --- Total wires: 11 algorithmic wires: 8 allocated wires: 3 zero state: 3 any state: 0 Total gates : 178 'Toffoli': 16, 'CNOT': 72, 'X': 34, 'Hadamard': 56 """ resource_keys = { "num_bitstrings", "size_bitstring", "num_bit_flips", "select_swap_depth", "restored", } @staticmethod def _t_optimized_select_swap_width(num_bitstrings, size_bitstring): opt_width_continuous = math.sqrt((2 / 3) * (num_bitstrings / size_bitstring)) w1 = 2 ** math.floor(math.log2(opt_width_continuous)) w2 = 2 ** math.ceil(math.log2(opt_width_continuous)) w1 = 1 if w1 < 1 else w1 w2 = 1 if w2 < 1 else w2 # The continuous solution could be non-physical def t_cost_func(w): return 4 * (math.ceil(num_bitstrings / w) - 2) + 6 * (w - 1) * size_bitstring if t_cost_func(w2) < t_cost_func(w1): return w2 return w1 def __init__( self, num_bitstrings: int, size_bitstring: int, num_bit_flips: int = None, restored: bool = True, select_swap_depth=None, wires: WiresLike = None, ) -> None: self.restored = restored self.num_bitstrings = num_bitstrings self.size_bitstring = size_bitstring self.num_bit_flips = num_bit_flips or (num_bitstrings * size_bitstring // 2) self.num_control_wires = math.ceil(math.log2(num_bitstrings)) self.num_wires = size_bitstring + self.num_control_wires if select_swap_depth is not None: if not isinstance(select_swap_depth, int): raise ValueError( f"`select_swap_depth` must be None or an integer. Got {type(select_swap_depth)}" ) exponent = int(math.log2(select_swap_depth)) if 2**exponent != select_swap_depth: raise ValueError( f"`select_swap_depth` must be 1 or a positive integer power of 2. Got {select_swap_depth}" ) self.select_swap_depth = select_swap_depth super().__init__(wires=wires) # pylint: disable=protected-access
[docs] @classmethod def resource_decomp( cls, num_bitstrings, size_bitstring, num_bit_flips, select_swap_depth=None, restored=True, ) -> list[GateCount]: r"""Returns a list of GateCount objects representing the operator's resources. Args: num_bitstrings (int): the number of bitstrings that are to be encoded size_bitstring (int): the length of each bitstring num_bit_flips (int, optional): The total number of :math:`1`'s in the dataset. Defaults to :code:`(num_bitstrings * size_bitstring) // 2`, which is half the dataset. select_swap_depth (int | None): A parameter :math:`\lambda` that determines if data will be loaded in parallel by adding more rows following Figure 1.C of `Low et al. (2024) <https://arxiv.org/pdf/1812.00954>`_. Can be :code:`None`, :code:`1` or a positive integer power of two. Defaults to :code:`None`, which internally determines the optimal depth. restored (bool, optional): Determine if allocated qubits should be reset after the computation (at the cost of higher gate counts). Defaults to :code`True`. Resources: The resources for QROM are taken from the following two papers: `Low et al. (2024) <https://arxiv.org/pdf/1812.00954>`_ (Figure 1.C) for :code:`restored = False` and `Berry et al. (2019) <https://arxiv.org/pdf/1902.02134>`_ (Figure 4) for :code:`restored = True`. Note: we use the unary iterator trick to implement the Select. This implementation assumes we have access to :math:`n - 1` additional work qubits, where :math:`n = \left\lceil log_{2}(N) \right\rceil` and :math:`N` is the number of batches of unitaries to select. """ if select_swap_depth: max_depth = 2 ** math.ceil(math.log2(num_bitstrings)) select_swap_depth = min(max_depth, select_swap_depth) # truncate depth beyond max depth W_opt = select_swap_depth or cls._t_optimized_select_swap_width( num_bitstrings, size_bitstring ) L_opt = math.ceil(num_bitstrings / W_opt) l = math.ceil(math.log2(L_opt)) gate_cost = [] num_alloc_wires = (W_opt - 1) * size_bitstring # Swap registers if L_opt > 1: num_alloc_wires += l - 1 # + work_wires for UI trick gate_cost.append(Allocate(num_alloc_wires)) x = resource_rep(qre.X) cnot = resource_rep(qre.CNOT) l_elbow = resource_rep(qre.TemporaryAND) r_elbow = resource_rep(qre.Adjoint, {"base_cmpr_op": l_elbow}) hadamard = resource_rep(qre.Hadamard) swap_restored_prefactor = 1 select_restored_prefactor = 1 if restored: gate_cost.append(GateCount(hadamard, 2 * size_bitstring)) swap_restored_prefactor = 4 select_restored_prefactor = 2 # SELECT cost: if L_opt > 1: gate_cost.append( GateCount(x, select_restored_prefactor * (2 * (L_opt - 2) + 1)) ) # conjugate 0 controlled toffolis + 1 extra X gate from un-controlled unary iterator decomp gate_cost.append( GateCount( cnot, select_restored_prefactor * (L_opt - 2) + select_restored_prefactor * num_bit_flips, ) # num CNOTs in unary iterator trick + each unitary in the select is just a CNOT ) gate_cost.append(GateCount(l_elbow, select_restored_prefactor * (L_opt - 2))) gate_cost.append(GateCount(r_elbow, select_restored_prefactor * (L_opt - 2))) gate_cost.append(Deallocate(l - 1)) # release UI trick work wires else: gate_cost.append( GateCount( x, select_restored_prefactor * num_bit_flips ) # each unitary in the select is just an X gate to load the data ) # SWAP cost: ctrl_swap = resource_rep(qre.CSWAP) gate_cost.append( GateCount(ctrl_swap, swap_restored_prefactor * (W_opt - 1) * size_bitstring) ) if restored: gate_cost.append(Deallocate((W_opt - 1) * size_bitstring)) # release Swap registers return gate_cost
[docs] @classmethod def single_controlled_res_decomp( cls, num_bitstrings, size_bitstring, num_bit_flips, select_swap_depth, restored, ): r"""The resource decomposition for QROM controlled on a single wire.""" if select_swap_depth: max_depth = 2 ** math.ceil(math.log2(num_bitstrings)) select_swap_depth = min(max_depth, select_swap_depth) # truncate depth beyond max depth W_opt = select_swap_depth or qre.QROM._t_optimized_select_swap_width( num_bitstrings, size_bitstring ) L_opt = math.ceil(num_bitstrings / W_opt) l = math.ceil(math.log2(L_opt)) gate_cost = [] num_alloc_wires = (W_opt - 1) * size_bitstring # Swap registers if L_opt > 1: num_alloc_wires += l # + work_wires for UI trick gate_cost.append(Allocate(num_alloc_wires)) x = resource_rep(qre.X) cnot = resource_rep(qre.CNOT) l_elbow = resource_rep(qre.TemporaryAND) r_elbow = resource_rep(qre.Adjoint, {"base_cmpr_op": l_elbow}) hadamard = resource_rep(qre.Hadamard) swap_restored_prefactor = 1 select_restored_prefactor = 1 if restored: gate_cost.append(GateCount(hadamard, 2 * size_bitstring)) swap_restored_prefactor = 4 select_restored_prefactor = 2 # SELECT cost: if L_opt > 1: gate_cost.append( GateCount(x, select_restored_prefactor * (2 * (L_opt - 1))) ) # conjugate 0 controlled toffolis gate_cost.append( GateCount( cnot, select_restored_prefactor * (L_opt - 1) + select_restored_prefactor * num_bit_flips, ) # num CNOTs in unary iterator trick + each unitary in the select is just a CNOT ) gate_cost.append(GateCount(l_elbow, select_restored_prefactor * (L_opt - 1))) gate_cost.append(GateCount(r_elbow, select_restored_prefactor * (L_opt - 1))) gate_cost.append(Deallocate(l)) # release UI trick work wires else: gate_cost.append( GateCount( x, select_restored_prefactor * num_bit_flips, ) # each unitary in the select is just an X ) # SWAP cost: w = math.ceil(math.log2(W_opt)) ctrl_swap = qre.CSWAP.resource_rep() gate_cost.append(Allocate(1)) # need one temporary qubit for l/r-elbow to control SWAP gate_cost.append(GateCount(l_elbow, w)) gate_cost.append( GateCount(ctrl_swap, swap_restored_prefactor * (W_opt - 1) * size_bitstring) ) gate_cost.append(GateCount(r_elbow, w)) gate_cost.append(Deallocate(1)) # temp wires if restored: gate_cost.append( Deallocate((W_opt - 1) * size_bitstring) ) # release Swap registers + temp wires return gate_cost
[docs] @classmethod def controlled_resource_decomp( cls, num_ctrl_wires: int, num_zero_ctrl: int, target_resource_params: dict ): r"""Returns a list representing the resources for a controlled version of the operator. Args: num_ctrl_wires (int): the number of qubits the operation is controlled on num_zero_ctrl (int): the number of control qubits, that are controlled when in the :math:`|0\rangle` state target_resource_params (dict): A dictionary containing the resource parameters of the target operator. Resources: The resources for QROM are taken from the following two papers: `Low et al. (2024) <https://arxiv.org/pdf/1812.00954>`_ (Figure 1.C) for :code:`restored = False` and `Berry et al. (2019) <https://arxiv.org/pdf/1902.02134>`_ (Figure 4) for :code:`restored = True`. Note: we use the single-controlled unary iterator trick to implement the Select. This implementation assumes we have access to :math:`n - 1` additional work qubits, where :math:`n = \ceil{log_{2}(N)}` and :math:`N` is the number of batches of unitaries to select. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ num_bitstrings = target_resource_params["num_bitstrings"] size_bitstring = target_resource_params["size_bitstring"] num_bit_flips = target_resource_params.get("num_bit_flips", None) select_swap_depth = target_resource_params.get("select_swap_depth", None) restored = target_resource_params.get("restored", True) gate_cost = [] if num_zero_ctrl: x = qre.X.resource_rep() gate_cost.append(GateCount(x, 2 * num_zero_ctrl)) if num_bit_flips is None: num_bit_flips = (num_bitstrings * size_bitstring) // 2 single_ctrl_cost = cls.single_controlled_res_decomp( num_bitstrings, size_bitstring, num_bit_flips, select_swap_depth, restored, ) if num_ctrl_wires == 1: gate_cost.extend(single_ctrl_cost) return gate_cost gate_cost.append(Allocate(1)) gate_cost.append(GateCount(qre.MultiControlledX.resource_rep(num_ctrl_wires, 0))) gate_cost.extend(single_ctrl_cost) gate_cost.append(GateCount(qre.MultiControlledX.resource_rep(num_ctrl_wires, 0))) gate_cost.append(Deallocate(1)) return gate_cost
@property def resource_params(self) -> dict: r"""Returns a dictionary containing the minimal information needed to compute the resources. Returns: dict: A dictionary containing the resource parameters: * num_bitstrings (int): the number of bitstrings that are to be encoded * size_bitstring (int): the length of each bitstring * num_bit_flips (int, optional): The total number of :math:`1`'s in the dataset. Defaults to :code:`(num_bitstrings * size_bitstring) // 2`, which is half the dataset. * restored (bool, optional): Determine if allocated qubits should be reset after the computation (at the cost of higher gate counts). Defaults to :code`True`. * select_swap_depth (int | None): A parameter :math:`\lambda` that determines if data will be loaded in parallel by adding more rows following Figure 1.C of `Low et al. (2024) <https://arxiv.org/pdf/1812.00954>`_. Can be :code:`None`, :code:`1` or a positive integer power of two. Defaults to :code:`None`, which internally determines the optimal depth. """ return { "num_bitstrings": self.num_bitstrings, "size_bitstring": self.size_bitstring, "num_bit_flips": self.num_bit_flips, "select_swap_depth": self.select_swap_depth, "restored": self.restored, }
[docs] @classmethod def resource_rep( cls, num_bitstrings, size_bitstring, num_bit_flips=None, restored=True, select_swap_depth=None, ) -> CompressedResourceOp: r"""Returns a compressed representation containing only the parameters of the Operator that are needed to compute a resource estimation. Args: num_bitstrings (int): the number of bitstrings that are to be encoded size_bitstring (int): the length of each bitstring num_bit_flips (int, optional): The total number of :math:`1`'s in the dataset. Defaults to :code:`(num_bitstrings * size_bitstring) // 2`, which is half the dataset. restored (bool, optional): Determine if allocated qubits should be reset after the computation (at the cost of higher gate counts). Defaults to :code`True`. select_swap_depth (int | None): A parameter :math:`\lambda` that determines if data will be loaded in parallel by adding more rows following Figure 1.C of `Low et al. (2024) <https://arxiv.org/pdf/1812.00954>`_. Can be :code:`None`, :code:`1` or a positive integer power of two. Defaults to :code:`None`, which internally determines the optimal depth. Returns: :class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: the operator in a compressed representation """ if num_bit_flips is None: num_bit_flips = num_bitstrings * size_bitstring // 2 if select_swap_depth is not None: if not isinstance(select_swap_depth, int): raise ValueError( f"`select_swap_depth` must be None or an integer. Got {type(select_swap_depth)}" ) exponent = int(math.log2(select_swap_depth)) if 2**exponent != select_swap_depth: raise ValueError( f"`select_swap_depth` must be 1 or a positive integer power of 2. Got f{select_swap_depth}" ) params = { "num_bitstrings": num_bitstrings, "num_bit_flips": num_bit_flips, "size_bitstring": size_bitstring, "select_swap_depth": select_swap_depth, "restored": restored, } num_wires = size_bitstring + math.ceil(math.log2(num_bitstrings)) return CompressedResourceOp(cls, num_wires, params)
[docs] class SelectPauliRot(ResourceOperator): r"""Resource class for the SelectPauliRot gate. Args: rot_axis (str): the rotation axis used in the multiplexer num_ctrl_wires (int): the number of control wires of the multiplexer precision (float | None): the precision used in the single qubit rotations wires (Sequence[int], None): the wires the operation acts on Resources: The resources are obtained from the construction scheme given in `Möttönen and Vartiainen (2005), Fig 7a <https://arxiv.org/abs/quant-ph/0504100>`_. Specifically, the resources for an :math:`n` qubit unitary are given as :math:`2^{n}` instances of the :code:`CNOT` gate and :math:`2^{n}` instances of the single qubit rotation gate (:code:`RX`, :code:`RY` or :code:`RZ`) depending on the :code:`rot_axis`. .. seealso:: The associated PennyLane operation :class:`~.pennylane.SelectPauliRot`. **Example** The resources for this operation are computed using: >>> import pennylane.estimator as qre >>> mltplxr = qre.SelectPauliRot( ... rot_axis = "Y", ... num_ctrl_wires = 4, ... precision = 1e-3, ... ) >>> print(qre.estimate(mltplxr, gate_set=['RY','CNOT'])) --- Resources: --- Total wires: 5 algorithmic wires: 5 allocated wires: 0 zero state: 0 any state: 0 Total gates : 32 'RY': 16, 'CNOT': 16 """ resource_keys = {"num_ctrl_wires", "rot_axis", "precision"} def __init__( self, rot_axis: str, num_ctrl_wires: int, precision: float | None = None, wires: WiresLike = None, ) -> None: if rot_axis not in ("X", "Y", "Z"): raise ValueError("The `rot_axis` argument must be one of ('X', 'Y', 'Z')") self.num_ctrl_wires = num_ctrl_wires self.rot_axis = rot_axis self.precision = precision self.num_wires = num_ctrl_wires + 1 super().__init__(wires=wires) @property def resource_params(self): r"""Returns a dictionary containing the minimal information needed to compute the resources. Returns: dict: A dictionary containing the resource parameters: * rot_axis (str): the rotation axis used in the multiplexer * num_ctrl_wires (int): the number of control wires of the multiplexer * precision (float): the precision used in the single qubit rotations """ return { "num_ctrl_wires": self.num_ctrl_wires, "rot_axis": self.rot_axis, "precision": self.precision, }
[docs] @classmethod def resource_rep(cls, num_ctrl_wires, rot_axis, precision=None): r"""Returns a compressed representation containing only the parameters of the Operator that are needed to compute the resources. Args: rot_axis (str): the rotation axis used in the multiplexer num_ctrl_wires (int): the number of control wires of the multiplexer precision (float | None): the precision used in the single qubit rotations Returns: :class:`~.pennylane.estimator.resource_operator.CompressedResourceOp`: the operator in a compressed representation """ num_wires = num_ctrl_wires + 1 return CompressedResourceOp( cls, num_wires, { "num_ctrl_wires": num_ctrl_wires, "rot_axis": rot_axis, "precision": precision, }, )
[docs] @classmethod def resource_decomp(cls, num_ctrl_wires, rot_axis, precision): r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: rot_axis (str): the rotation axis used in the multiplexer num_ctrl_wires (int): the number of control wires of the multiplexer precision (float): the precision used in the single qubit rotations Resources: The resources are obtained from the construction scheme given in `Möttönen and Vartiainen (2005), Fig 7a <https://arxiv.org/abs/quant-ph/0504100>`_. Specifically, the resources for an :math:`n` qubit unitary are given as :math:`2^{n}` instances of the :code:`CNOT` gate and :math:`2^{n}` instances of the single qubit rotation gate (:code:`RX`, :code:`RY` or :code:`RZ`) depending on the :code:`rot_axis`. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ rotation_gate_map = { "X": qre.RX, "Y": qre.RY, "Z": qre.RZ, } gate = resource_rep(rotation_gate_map[rot_axis], {"precision": precision}) cnot = resource_rep(qre.CNOT) gate_lst = [ GateCount(gate, 2**num_ctrl_wires), GateCount(cnot, 2**num_ctrl_wires), ] return gate_lst
[docs] @classmethod def phase_grad_resource_decomp(cls, num_ctrl_wires, rot_axis, precision): r"""Returns a list representing the resources of the operator. Each object in the list represents a gate and the number of times it occurs in the circuit. Args: rot_axis (str): the rotation axis used in the multiplexer num_ctrl_wires (int): the number of control wires of the multiplexer precision (float): the precision used in the single qubit rotations Resources: The resources are obtained from the construction scheme given in `O'Brien and Sünderhauf (2025), Fig 4 <https://arxiv.org/pdf/2409.07332>`_. Specifically, the resources use two :class:`~.pennylane.estimator.templates.subroutines.QROM`s to digitally load and unload the phase angles up to some precision. These are then applied using a single controlled :class:`~.pennylane.estimator.templates.subroutines.SemiAdder`. .. note:: This method assumes a phase gradient state is prepared on an auxiliary register. Returns: list[:class:`~.pennylane.estimator.resource_operator.GateCount`]: A list of GateCount objects, where each object represents a specific quantum gate and the number of times it appears in the decomposition. """ num_prec_wires = math.ceil(math.log2(math.pi / precision)) + 1 gate_lst = [] qrom = resource_rep( qre.QROM, { "num_bitstrings": 2**num_ctrl_wires, "num_bit_flips": 2**num_ctrl_wires * num_prec_wires // 2, "size_bitstring": num_prec_wires, "restored": False, }, ) gate_lst.append(Allocate(num_prec_wires)) gate_lst.append(GateCount(qrom)) gate_lst.append( GateCount( resource_rep( qre.Controlled, { "base_cmpr_op": resource_rep( qre.SemiAdder, {"max_register_size": num_prec_wires}, ), "num_ctrl_wires": 1, "num_zero_ctrl": 0, }, ) ) ) gate_lst.append(GateCount(resource_rep(qre.Adjoint, {"base_cmpr_op": qrom}))) gate_lst.append(Deallocate(num_prec_wires)) h = resource_rep(qre.Hadamard) s = resource_rep(qre.S) s_dagg = resource_rep(qre.Adjoint, {"base_cmpr_op": s}) if rot_axis == "X": gate_lst.append(GateCount(h, 2)) if rot_axis == "Y": gate_lst.append(GateCount(h, 2)) gate_lst.append(GateCount(s)) gate_lst.append(GateCount(s_dagg)) return gate_lst