Source code for pennylane.math.quantum
# Copyright 2018-2022 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Differentiable quantum functions"""
import functools
# pylint: disable=import-outside-toplevel
import itertools
from string import ascii_letters as ABC
from autoray import numpy as np
from numpy import float64 # pylint:disable=wrong-import-order
import pennylane as qml
from . import single_dispatch # pylint:disable=unused-import
from .interface_utils import get_interface
from .matrix_manipulation import _permute_dense_matrix
from .multi_dispatch import diag, dot, einsum, scatter_element_add
from .utils import allclose, cast, cast_like, convert_like, is_abstract
ABC_ARRAY = np.array(list(ABC))
[docs]def cov_matrix(prob, obs, wires=None, diag_approx=False):
"""Calculate the covariance matrix of a list of commuting observables, given
the joint probability distribution of the system in the shared eigenbasis.
.. note::
This method only works for **commuting observables.**
If the probability distribution is the result of a quantum circuit,
the quantum state must be rotated into the shared
eigenbasis of the list of observables before measurement.
Args:
prob (tensor_like): probability distribution
obs (list[.Observable]): a list of observables for which
to compute the covariance matrix
diag_approx (bool): if True, return the diagonal approximation
wires (.Wires): The wire register of the system. If not provided,
it is assumed that the wires are labelled with consecutive integers.
Returns:
tensor_like: the covariance matrix of size ``(len(obs), len(obs))``
**Example**
Consider the following ansatz and observable list:
>>> obs_list = [qml.X(0) @ qml.Z(1), qml.Y(2)]
>>> ansatz = qml.templates.StronglyEntanglingLayers
We can construct a QNode to output the probability distribution in the shared eigenbasis of the
observables:
.. code-block:: python
from pennylane import numpy as np
dev = qml.device("default.qubit", wires=3)
@qml.qnode(dev, interface="autograd")
def circuit(weights):
ansatz(weights, wires=[0, 1, 2])
# rotate into the basis of the observables
for o in obs_list:
o.diagonalizing_gates()
return qml.probs(wires=[0, 1, 2])
We can now compute the covariance matrix:
>>> shape = qml.templates.StronglyEntanglingLayers.shape(n_layers=2, n_wires=3)
>>> weights = np.random.random(shape, requires_grad=True)
>>> cov = qml.math.cov_matrix(circuit(weights), obs_list)
>>> cov
tensor([[0.98125435, 0.4905541 ],
[0.4905541 , 0.99920878]], requires_grad=True)
Autodifferentiation is fully supported using all interfaces.
Here we use autograd:
>>> cost_fn = lambda weights: qml.math.cov_matrix(circuit(weights), obs_list)[0, 1]
>>> qml.grad(cost_fn)(weights)
array([[[ 4.94240914e-17, -2.33786398e-01, -1.54193959e-01],
[-3.05414996e-17, 8.40072236e-04, 5.57884080e-04],
[ 3.01859411e-17, 8.60411436e-03, 6.15745204e-04]],
[[ 6.80309533e-04, -1.23162742e-03, 1.08729813e-03],
[-1.53863193e-01, -1.38700657e-02, -1.36243323e-01],
[-1.54665054e-01, -1.89018172e-02, -1.56415558e-01]]])
"""
variances = []
# diagonal variances
for i, o in enumerate(obs):
eigvals = cast(o.eigvals(), dtype=float64)
w = o.wires.labels if wires is None else wires.indices(o.wires)
p = marginal_prob(prob, w)
res = dot(eigvals**2, p) - (dot(eigvals, p)) ** 2
variances.append(res)
cov = diag(variances)
if diag_approx:
return cov
for i, j in itertools.combinations(range(len(obs)), r=2):
o1 = obs[i]
o2 = obs[j]
o1wires = o1.wires.labels if wires is None else wires.indices(o1.wires)
o2wires = o2.wires.labels if wires is None else wires.indices(o2.wires)
shared_wires = set(o1wires + o2wires)
l1 = cast(o1.eigvals(), dtype=float64)
l2 = cast(o2.eigvals(), dtype=float64)
l12 = cast(np.kron(l1, l2), dtype=float64)
p1 = marginal_prob(prob, o1wires)
p2 = marginal_prob(prob, o2wires)
p12 = marginal_prob(prob, shared_wires)
res = dot(l12, p12) - dot(l1, p1) * dot(l2, p2)
cov = scatter_element_add(cov, [i, j], res)
cov = scatter_element_add(cov, [j, i], res)
return cov
[docs]def marginal_prob(prob, axis):
"""Compute the marginal probability given a joint probability distribution expressed as a tensor.
Each random variable corresponds to a dimension.
If the distribution arises from a quantum circuit measured in computational basis, each dimension
corresponds to a wire. For example, for a 2-qubit quantum circuit `prob[0, 1]` is the probability of measuring the
first qubit in state 0 and the second in state 1.
Args:
prob (tensor_like): 1D tensor of probabilities. This tensor should of size
``(2**N,)`` for some integer value ``N``.
axis (list[int]): the axis for which to calculate the marginal
probability distribution
Returns:
tensor_like: the marginal probabilities, of
size ``(2**len(axis),)``
**Example**
>>> x = tf.Variable([1, 0, 0, 1.], dtype=tf.float64) / np.sqrt(2)
>>> marginal_prob(x, axis=[0, 1])
<tf.Tensor: shape=(4,), dtype=float64, numpy=array([0.70710678, 0. , 0. , 0.70710678])>
>>> marginal_prob(x, axis=[0])
<tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.70710678, 0.70710678])>
"""
prob = np.flatten(prob)
num_wires = int(np.log2(len(prob)))
if num_wires == len(axis):
return prob
inactive_wires = tuple(set(range(num_wires)) - set(axis))
prob = np.reshape(prob, [2] * num_wires)
prob = np.sum(prob, axis=inactive_wires)
return np.flatten(prob)
[docs]def reduce_dm(density_matrix, indices, check_state=False, c_dtype="complex128"):
"""Compute the density matrix from a state represented with a density matrix.
Args:
density_matrix (tensor_like): 2D or 3D density matrix tensor. This tensor should be of size ``(2**N, 2**N)`` or
``(batch_dim, 2**N, 2**N)``, for some integer number of wires``N``.
indices (list(int)): List of indices in the considered subsystem.
check_state (bool): If True, the function will check the state validity (shape and norm).
c_dtype (str): Complex floating point precision type.
Returns:
tensor_like: Density matrix of size ``(2**len(indices), 2**len(indices))`` or ``(batch_dim, 2**len(indices), 2**len(indices))``
.. seealso:: :func:`pennylane.math.reduce_statevector`, and :func:`pennylane.density_matrix`
**Example**
>>> x = np.array([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])
>>> reduce_dm(x, indices=[0])
[[1.+0.j 0.+0.j]
[0.+0.j 0.+0.j]]
>>> y = [[0.5, 0, 0.5, 0], [0, 0, 0, 0], [0.5, 0, 0.5, 0], [0, 0, 0, 0]]
>>> reduce_dm(y, indices=[0])
[[0.5+0.j 0.5+0.j]
[0.5+0.j 0.5+0.j]]
>>> reduce_dm(y, indices=[1])
[[1.+0.j 0.+0.j]
[0.+0.j 0.+0.j]]
>>> z = tf.Variable([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=tf.complex128)
>>> reduce_dm(z, indices=[1])
tf.Tensor(
[[1.+0.j 0.+0.j]
[0.+0.j 0.+0.j]], shape=(2, 2), dtype=complex128)
>>> x = np.array([[[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
... [[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]])
>>> reduce_dm(x, indices=[1])
array([[[1.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j]],
[[0.+0.j, 0.+0.j],
[0.+0.j, 1.+0.j]]])
"""
density_matrix = cast(density_matrix, dtype=c_dtype)
if check_state:
_check_density_matrix(density_matrix)
if len(np.shape(density_matrix)) == 2:
batch_dim, dim = None, density_matrix.shape[0]
else:
batch_dim, dim = density_matrix.shape[:2]
num_indices = int(np.log2(dim))
consecutive_indices = list(range(num_indices))
# Return the full density matrix if all the wires are given, potentially permuted
if len(indices) == num_indices:
return _permute_dense_matrix(density_matrix, consecutive_indices, indices, batch_dim)
if batch_dim is None:
density_matrix = qml.math.stack([density_matrix])
# Compute the partial trace
traced_wires = [x for x in consecutive_indices if x not in indices]
density_matrix = partial_trace(density_matrix, traced_wires, c_dtype=c_dtype)
if batch_dim is None:
density_matrix = density_matrix[0]
# Permute the remaining indices of the density matrix
return _permute_dense_matrix(density_matrix, sorted(indices), indices, batch_dim)
[docs]def partial_trace(matrix, indices, c_dtype="complex128"):
"""Compute the reduced density matrix by tracing out the provided indices.
Args:
matrix (tensor_like): 2D or 3D density matrix tensor. For a 2D tensor, the size is assumed to be
``(2**n, 2**n)``, for some integer number of wires ``n``. For a 3D tensor, the first dimension is assumed to be the batch dimension, ``(batch_dim, 2**N, 2**N)``.
indices (list(int)): List of indices to be traced.
Returns:
tensor_like: (reduced) Density matrix of size ``(2**len(wires), 2**len(wires))``
.. seealso:: :func:`pennylane.math.reduce_dm`, and :func:`pennylane.math.reduce_statevector`
**Example**
We can compute the partial trace of the matrix ``x`` with respect to its 0th index.
>>> x = np.array([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])
>>> partial_trace(x, indices=[0])
array([[1.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j]])
We can also pass a batch of matrices ``x`` to the function and return the partial trace of each matrix with respect to each matrix's 0th index.
>>> x = np.array([
... [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
... [[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
... ])
>>> partial_trace(x, indices=[0])
array([[[1.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j]],
[[0.+0.j, 0.+0.j],
[0.+0.j, 1.+0.j]]])
The partial trace can also be computed with respect to multiple indices within different frameworks such as TensorFlow.
>>> x = tf.Variable([[[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
... [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]]], dtype=tf.complex128)
>>> partial_trace(x, indices=[1])
<tf.Tensor: shape=(2, 2, 2), dtype=complex128, numpy=
array([[[1.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j]],
[[0.+0.j, 0.+0.j],
[0.+0.j, 1.+0.j]]])>
"""
# Autograd does not support same indices sum in backprop, and tensorflow
# has a limit of 8 dimensions if same indices are used
matrix = cast(matrix, dtype=c_dtype)
if qml.math.ndim(matrix) == 2:
is_batched = False
batch_dim, dim = 1, matrix.shape[1]
else:
is_batched = True
batch_dim, dim = matrix.shape[:2]
if get_interface(matrix) in ["autograd", "tensorflow"]:
return _batched_partial_trace_nonrep_indices(matrix, is_batched, indices, batch_dim, dim)
# Dimension and reshape
num_indices = int(np.log2(dim))
rho_dim = 2 * num_indices
matrix = np.reshape(matrix, [batch_dim] + [2] * 2 * num_indices)
indices = np.sort(indices)
# For loop over wires
for i, target_index in enumerate(indices):
target_index = target_index - i
state_indices = ABC[1 : rho_dim - 2 * i + 1]
state_indices = list(state_indices)
target_letter = state_indices[target_index]
state_indices[target_index + num_indices - i] = target_letter
state_indices = "".join(state_indices)
einsum_indices = f"a{state_indices}"
matrix = einsum(einsum_indices, matrix)
number_wires_sub = num_indices - len(indices)
reduced_density_matrix = np.reshape(
matrix, (batch_dim, 2**number_wires_sub, 2**number_wires_sub)
)
return reduced_density_matrix if is_batched else reduced_density_matrix[0]
def _batched_partial_trace_nonrep_indices(matrix, is_batched, indices, batch_dim, dim):
"""Compute the reduced density matrix for autograd interface by tracing out the provided indices with the use
of projectors as same subscripts indices are not supported in autograd backprop.
"""
num_indices = int(np.log2(dim))
rho_dim = 2 * num_indices
matrix = np.reshape(matrix, [batch_dim] + [2] * 2 * num_indices)
kraus = cast(np.eye(2), matrix.dtype)
kraus = np.reshape(kraus, (2, 1, 2))
kraus_dagger = np.asarray([np.conj(np.transpose(k)) for k in kraus])
kraus = convert_like(kraus, matrix)
kraus_dagger = convert_like(kraus_dagger, matrix)
# For loop over wires
for target_wire in indices:
# Tensor indices of density matrix
state_indices = ABC[1 : rho_dim + 1]
# row indices of the quantum state affected by this operation
row_wires_list = [target_wire + 1]
row_indices = "".join(ABC_ARRAY[row_wires_list].tolist())
# column indices are shifted by the number of wires
col_wires_list = [w + num_indices for w in row_wires_list]
col_indices = "".join(ABC_ARRAY[col_wires_list].tolist())
# indices in einsum must be replaced with new ones
num_partial_trace_wires = 1
new_row_indices = ABC[rho_dim + 1 : rho_dim + num_partial_trace_wires + 1]
new_col_indices = ABC[
rho_dim + num_partial_trace_wires + 1 : rho_dim + 2 * num_partial_trace_wires + 1
]
# index for summation over Kraus operators
kraus_index = ABC[
rho_dim + 2 * num_partial_trace_wires + 1 : rho_dim + 2 * num_partial_trace_wires + 2
]
# new state indices replace row and column indices with new ones
new_state_indices = functools.reduce(
lambda old_string, idx_pair: old_string.replace(idx_pair[0], idx_pair[1]),
zip(col_indices + row_indices, new_col_indices + new_row_indices),
state_indices,
)
# index mapping for einsum, e.g., 'iga,abcdef,idh->gbchef'
einsum_indices = (
f"{kraus_index}{new_row_indices}{row_indices}, a{state_indices},"
f"{kraus_index}{col_indices}{new_col_indices}->a{new_state_indices}"
)
matrix = einsum(einsum_indices, kraus, matrix, kraus_dagger)
number_wires_sub = num_indices - len(indices)
reduced_density_matrix = np.reshape(
matrix, (batch_dim, 2**number_wires_sub, 2**number_wires_sub)
)
return reduced_density_matrix if is_batched else reduced_density_matrix[0]
[docs]def reduce_statevector(state, indices, check_state=False, c_dtype="complex128"):
"""Compute the density matrix from a state vector.
Args:
state (tensor_like): 1D or 2D tensor state vector. This tensor should of size ``(2**N,)``
or ``(batch_dim, 2**N)``, for some integer value ``N``.
indices (list(int)): List of indices in the considered subsystem.
check_state (bool): If True, the function will check the state validity (shape and norm).
c_dtype (str): Complex floating point precision type.
Returns:
tensor_like: Density matrix of size ``(2**len(indices), 2**len(indices))`` or ``(batch_dim, 2**len(indices), 2**len(indices))``
.. seealso:: :func:`pennylane.math.reduce_dm` and :func:`pennylane.density_matrix`
**Example**
>>> x = np.array([1, 0, 0, 0])
>>> reduce_statevector(x, indices=[0])
[[1.+0.j 0.+0.j]
[0.+0.j 0.+0.j]]
>>> y = [1, 0, 1, 0] / np.sqrt(2)
>>> reduce_statevector(y, indices=[0])
[[0.5+0.j 0.5+0.j]
[0.5+0.j 0.5+0.j]]
>>> reduce_statevector(y, indices=[1])
[[1.+0.j 0.+0.j]
[0.+0.j 0.+0.j]]
>>> z = tf.Variable([1, 0, 0, 0], dtype=tf.complex128)
>>> reduce_statevector(z, indices=[1])
tf.Tensor(
[[1.+0.j 0.+0.j]
[0.+0.j 0.+0.j]], shape=(2, 2), dtype=complex128)
>>> x = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])
>>> reduce_statevector(x, indices=[1])
array([[[1.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j]],
[[0.+0.j, 0.+0.j],
[0.+0.j, 1.+0.j]]])
"""
state = cast(state, dtype=c_dtype)
# Check the format and norm of the state vector
if check_state:
_check_state_vector(state)
if len(np.shape(state)) == 1:
batch_dim, dim = None, np.shape(state)[0]
else:
batch_dim, dim = np.shape(state)[:2]
# batch dim exists but is unknown; cast to int so that reshaping works
if batch_dim is None:
batch_dim = -1
# Get dimension of the quantum system and reshape
num_wires = int(np.log2(dim))
consecutive_wires = list(range(num_wires))
if batch_dim is None:
state = qml.math.stack([state])
state = np.reshape(state, [batch_dim if batch_dim is not None else 1] + [2] * num_wires)
# Get the system to be traced
# traced_system = [x + 1 for x in consecutive_wires if x not in indices]
# trace out the subsystem
indices1 = ABC[1 : num_wires + 1]
indices2 = "".join(
[ABC[num_wires + i + 1] if i in indices else ABC[i + 1] for i in consecutive_wires]
)
target = "".join(
[ABC[i + 1] for i in sorted(indices)] + [ABC[num_wires + i + 1] for i in sorted(indices)]
)
density_matrix = einsum(
f"a{indices1},a{indices2}->a{target}",
state,
np.conj(state),
optimize="greedy",
)
# Return the reduced density matrix by using numpy tensor product
# density_matrix = np.tensordot(state, np.conj(state), axes=(traced_system, traced_system))
if batch_dim is None:
density_matrix = np.reshape(density_matrix, (2 ** len(indices), 2 ** len(indices)))
else:
density_matrix = np.reshape(
density_matrix, (batch_dim, 2 ** len(indices), 2 ** len(indices))
)
return _permute_dense_matrix(density_matrix, sorted(indices), indices, batch_dim)
[docs]def dm_from_state_vector(state, check_state=False, c_dtype="complex128"):
"""
Convenience function to compute a (full) density matrix from
a state vector.
Args:
state (tensor_like): 1D or 2D tensor state vector. This tensor should of size ``(2**N,)``
or ``(batch_dim, 2**N)``, for some integer value ``N``.
check_state (bool): If True, the function will check the state validity (shape and norm).
c_dtype (str): Complex floating point precision type.
Returns:
tensor_like: Density matrix of size ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)``
**Example**
>>> x = np.array([1, 0, 1j, 0]) / np.sqrt(2)
>>> dm_from_state_vector(x)
array([[0.5+0.j , 0. +0.j , 0. -0.5j, 0. +0.j ],
[0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j ],
[0. +0.5j, 0. +0.j , 0.5+0.j , 0. +0.j ],
[0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j ]])
"""
num_wires = int(np.log2(np.shape(state)[-1]))
return reduce_statevector(
state,
indices=list(range(num_wires)),
check_state=check_state,
c_dtype=c_dtype,
)
[docs]def purity(state, indices, check_state=False, c_dtype="complex128"):
r"""Computes the purity of a density matrix.
.. math::
\gamma = \text{Tr}(\rho^2)
where :math:`\rho` is the density matrix. The purity of a normalized quantum state satisfies
:math:`\frac{1}{d} \leq \gamma \leq 1`, where :math:`d` is the dimension of the Hilbert space.
A pure state has a purity of 1.
It is possible to compute the purity of a sub-system from a given state. To find the purity of
the overall state, include all wires in the ``indices`` argument.
Args:
state (tensor_like): Density matrix of shape ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)``
indices (list(int)): List of indices in the considered subsystem.
check_state (bool): If ``True``, the function will check the state validity (shape and norm).
c_dtype (str): Complex floating point precision type.
Returns:
float: Purity of the considered subsystem.
**Example**
>>> x = [[1/2, 0, 0, 1/2], [0, 0, 0, 0], [0, 0, 0, 0], [1/2, 0, 0, 1/2]]
>>> purity(x, [0, 1])
1.0
>>> purity(x, [0])
0.5
>>> x = [[1/2, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1/2]]
>>> purity(x, [0, 1])
0.5
"""
# Cast as a c_dtype array
state = cast(state, dtype=c_dtype)
density_matrix = reduce_dm(state, indices, check_state)
return _compute_purity(density_matrix)
def _compute_purity(density_matrix):
"""Compute the purity from a density matrix
Args:
density_matrix (tensor_like): ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)`` tensor for an integer `N`.
Returns:
float: Purity of the density matrix.
**Example**
>>> x = [[1/2, 0], [0, 1/2]]
>>> _compute_purity(x)
0.5
>>> x = [[1/2, 1/2], [1/2, 1/2]]
>>> _compute_purity(x)
1
"""
batched = len(qml.math.shape(density_matrix)) > 2
if batched:
return qml.math.real(qml.math.einsum("abc,acb->a", density_matrix, density_matrix))
return qml.math.real(qml.math.einsum("ab,ba", density_matrix, density_matrix))
[docs]def vn_entropy(state, indices, base=None, check_state=False, c_dtype="complex128"):
r"""Compute the Von Neumann entropy from a density matrix on a given subsystem. It supports all
interfaces (NumPy, Autograd, Torch, TensorFlow and Jax).
.. math::
S( \rho ) = -\text{Tr}( \rho \log ( \rho ))
Args:
state (tensor_like): Density matrix of shape ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)``.
indices (list(int)): List of indices in the considered subsystem.
base (float): Base for the logarithm. If None, the natural logarithm is used.
check_state (bool): If True, the function will check the state validity (shape and norm).
c_dtype (str): Complex floating point precision type.
Returns:
float: Von Neumann entropy of the considered subsystem.
**Example**
The entropy of a subsystem for any state vectors can be obtained. Here is an example for the
maximally entangled state, where the subsystem entropy is maximal (default base for log is exponential).
>>> x = [1, 0, 0, 1] / np.sqrt(2)
>>> x = dm_from_state_vector(x)
>>> vn_entropy(x, indices=[0])
0.6931472
The logarithm base can be switched to 2 for example.
>>> vn_entropy(x, indices=[0], base=2)
1.0
.. seealso:: :func:`pennylane.vn_entropy`
"""
density_matrix = reduce_dm(state, indices, check_state, c_dtype)
entropy = _compute_vn_entropy(density_matrix, base)
return entropy
def _compute_vn_entropy(density_matrix, base=None):
"""Compute the Von Neumann entropy from a density matrix
Args:
density_matrix (tensor_like): ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)`` tensor for an integer `N`.
base (float, int): Base for the logarithm. If None, the natural logarithm is used.
Returns:
float: Von Neumann entropy of the density matrix.
**Example**
>>> x = [[1/2, 0], [0, 1/2]]
>>> _compute_vn_entropy(x)
0.6931472
>>> x = [[1/2, 0], [0, 1/2]]
>>> _compute_vn_entropy(x, base=2)
1.0
"""
# Change basis if necessary
if base:
div_base = np.log(base)
else:
div_base = 1
evs = qml.math.eigvalsh(density_matrix)
evs = qml.math.where(evs > 0, evs, 1.0)
entropy = qml.math.entr(evs) / div_base
return entropy
# pylint: disable=too-many-arguments
[docs]def mutual_info(
state,
indices0,
indices1,
base=None,
check_state=False,
c_dtype="complex128",
):
r"""Compute the mutual information between two subsystems given a state:
.. math::
I(A, B) = S(\rho^A) + S(\rho^B) - S(\rho^{AB})
where :math:`S` is the von Neumann entropy.
The mutual information is a measure of correlation between two subsystems.
More specifically, it quantifies the amount of information obtained about
one system by measuring the other system. It supports all interfaces
(NumPy, Autograd, Torch, TensorFlow and Jax).
Each state must be given as a density matrix. To find the mutual information given
a pure state, call :func:`~.math.dm_from_state_vector` first.
Args:
state (tensor_like): ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)`` density matrix.
indices0 (list[int]): List of indices in the first subsystem.
indices1 (list[int]): List of indices in the second subsystem.
base (float): Base for the logarithm. If None, the natural logarithm is used.
check_state (bool): If True, the function will check the state validity (shape and norm).
c_dtype (str): Complex floating point precision type.
Returns:
float: Mutual information between the subsystems
**Examples**
The mutual information between subsystems for a state vector can be returned as follows:
>>> x = np.array([1, 0, 0, 1]) / np.sqrt(2)
>>> x = qml.math.dm_from_state_vector(x)
>>> qml.math.mutual_info(x, indices0=[0], indices1=[1])
1.3862943611198906
It is also possible to change the log basis.
>>> qml.math.mutual_info(x, indices0=[0], indices1=[1], base=2)
2.0
Similarly the quantum state can be provided as a density matrix:
>>> y = np.array([[1/2, 1/2, 0, 1/2], [1/2, 0, 0, 0], [0, 0, 0, 0], [1/2, 0, 0, 1/2]])
>>> qml.math.mutual_info(y, indices0=[0], indices1=[1])
0.4682351577408206
.. seealso:: :func:`~.math.vn_entropy` and :func:`pennylane.mutual_info`
"""
# the subsystems cannot overlap
if len([index for index in indices0 if index in indices1]) > 0:
raise ValueError("Subsystems for computing mutual information must not overlap.")
return _compute_mutual_info(
state,
indices0,
indices1,
base=base,
check_state=check_state,
c_dtype=c_dtype,
)
# pylint: disable=too-many-arguments
def _compute_mutual_info(
state,
indices0,
indices1,
base=None,
check_state=False,
c_dtype="complex128",
):
"""Compute the mutual information between the subsystems."""
all_indices = sorted([*indices0, *indices1])
vn_entropy_1 = vn_entropy(
state,
indices=indices0,
base=base,
check_state=check_state,
c_dtype=c_dtype,
)
vn_entropy_2 = vn_entropy(
state,
indices=indices1,
base=base,
check_state=check_state,
c_dtype=c_dtype,
)
vn_entropy_12 = vn_entropy(
state,
indices=all_indices,
base=base,
check_state=check_state,
c_dtype=c_dtype,
)
return vn_entropy_1 + vn_entropy_2 - vn_entropy_12
def _check_hermitian_operator(operators):
"""Check the shape, and if the matrix is hermitian."""
dim = operators.shape[-1]
if (
len(operators.shape) not in (2, 3)
or operators.shape[-2] != dim
or not np.log2(dim).is_integer()
):
raise ValueError(
"Operator matrix must be of shape (2**wires,2**wires) "
"or (batch_dim, 2**wires, 2**wires)."
)
if len(operators.shape) == 2:
operators = qml.math.stack([operators])
if not is_abstract(operators):
for ops in operators:
conj_trans = np.transpose(np.conj(ops))
if not allclose(ops, conj_trans):
raise ValueError("The matrix is not Hermitian.")
[docs]def expectation_value(
operator_matrix, state_vector, check_state=False, check_operator=False, c_dtype="complex128"
):
r"""Compute the expectation value of an operator with respect to a pure state.
The expectation value is the probabilistic expected result of an experiment.
Given a pure state, i.e., a state which can be represented as a single
vector :math:`\ket{\psi}` in the Hilbert space, the expectation value of an
operator :math:`A` can computed as
.. math::
\langle A \rangle_\psi = \bra{\psi} A \ket{\psi}
Args:
operator_matrix (tensor_like): operator matrix with shape ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)``.
state_vector (tensor_like): state vector with shape ``(2**N)`` or ``(batch_dim, 2**N)``.
check_state (bool): if True, the function will check the validity of the state vector
via its shape and the norm.
check_operator (bool): if True, the function will check the validity of the operator
via its shape and whether it is hermitian.
c_dtype (str): complex floating point precision type.
Returns:
float: Expectation value of the operator for the state vector.
**Example**
The expectation value for any operator can obtained by passing their matrix representation as an argument.
For example, for a 2 qubit state, we can compute the expectation value of the operator :math:`Z \otimes I` as
>>> import pennylane as qml
>>> import numpy as np
>>> state_vector = [1 / np.sqrt(2), 0, 1 / np.sqrt(2), 0]
>>> operator_matrix = qml.matrix(qml.PauliZ(0), wire_order=[0, 1])
>>> qml.math.expectation_value(operator_matrix, state_vector)
tensor(-2.23711432e-17+0.j, requires_grad=True)
.. seealso:: :func:`pennylane.math.fidelity`
"""
state_vector = cast(state_vector, dtype=c_dtype)
operator_matrix = cast(operator_matrix, dtype=c_dtype)
if check_state:
_check_state_vector(state_vector)
if check_operator:
_check_hermitian_operator(operator_matrix)
if qml.math.shape(operator_matrix)[-1] != qml.math.shape(state_vector)[-1]:
raise qml.QuantumFunctionError(
"The operator and the state vector must have the same number of wires."
)
# The overlap <psi|A|psi>
expval = qml.math.einsum(
"...i,...i->...",
qml.math.conj(state_vector),
qml.math.einsum("...ji,...i->...j", operator_matrix, state_vector, optimize="greedy"),
optimize="greedy",
)
return expval
# pylint: disable=too-many-arguments
[docs]def vn_entanglement_entropy(
state, indices0, indices1, base=None, check_state=False, c_dtype="complex128"
):
r"""Compute the Von Neumann entanglement entropy between two subsystems in a given state.
.. math::
S(\rho_A) = -\text{Tr}[\rho_A \log \rho_A] = -\text{Tr}[\rho_B \log \rho_B] = S(\rho_B)
where :math:`S` is the von Neumann entropy, and :math:`\rho_A = \text{Tr}_B [\rho_{AB}]` and
:math:`\rho_B = \text{Tr}_A [\rho_{AB}]` are the reduced density matrices for each partition.
The Von Neumann entanglement entropy is a measure of the degree of quantum entanglement between
two subsystems constituting a pure bipartite quantum state. The entropy of entanglement is the
Von Neumann entropy of the reduced density matrix for any of the subsystems. If it is non-zero,
it indicates the two subsystems are entangled.
Each state must be given as a density matrix. To find the mutual information given
a pure state, call :func:`~.math.dm_from_state_vector` first.
Args:
state (tensor_like): ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)`` density matrix.
indices0 (list[int]): Indices of the qubits in the first subsystem.
indices1 (list[int]): Indices of the qubits in the second subsystem.
base (float): Base for the logarithm. If ``None``, the natural logarithm is used.
check_state (bool): If True, the function will check the state validity (shape and norm).
c_dtype (str): Complex floating point precision type.
Returns:
float: The von Neumann entanglement entropy of the bipartite state.
**Examples**
The entanglement entropy between subsystems for a state vector can be returned as follows:
>>> x = np.array([0, -1, 1, 0]) / np.sqrt(2)
>>> x = qml.math.dm_from_state_vector(x)
>>> qml.math.vn_entanglement_entropy(x, indices0=[0], indices1=[1])
0.6931471805599453
It is also possible to change the logarithm base:
>>> qml.math.vn_entanglement_entropy(x, indices0=[0], indices1=[1], base=2)
1
Similarly, the quantum state can be provided as a density matrix:
>>> y = np.array([[1, 1, -1, -1], [1, 1, -1, -1], [-1, -1, 1, 1], [-1, -1, 1, 1]]) * 0.25
>>> qml.math.vn_entanglement_entropy(y, indices0=[0], indices1=[1])
0
"""
# The subsystems cannot overlap
if len([index for index in indices0 if index in indices1]) > 0:
raise ValueError("Subsystems for computing the entanglement entropy must not overlap.")
return _compute_vn_entanglement_entropy(
state, indices0, indices1, base=base, check_state=check_state, c_dtype=c_dtype
)
def _compute_vn_entanglement_entropy(
state, indices0, _, base=None, check_state=False, c_dtype="complex128"
):
"""Computes the Von Neumann entanglement entropy between the subsystems."""
vn_entropy_1 = vn_entropy(
state, indices=indices0, base=base, check_state=check_state, c_dtype=c_dtype
)
# The Von Neumann entropy of the two subsystems should be the same if the overall state is a
# pure state. Here we trust that the user only uses this function for pure states, and do not
# perform any checks so that the code is compatible with jax.jit
return vn_entropy_1
[docs]def sqrt_matrix(density_matrix):
r"""Compute the square root matrix of a density matrix where :math:`\rho = \sqrt{\rho} \times \sqrt{\rho}`
Args:
density_matrix (tensor_like): 2D or 3D (with batching) density matrix of the quantum system.
Returns:
(tensor_like): Square root of the density matrix.
"""
evs, vecs = qml.math.linalg.eigh(density_matrix)
evs = qml.math.real(evs)
evs = qml.math.where(evs > 0.0, evs, 0.0)
if not is_abstract(evs):
evs = qml.math.cast_like(evs, vecs)
shape = qml.math.shape(density_matrix)
if len(shape) > 2:
# broadcasting case
i = qml.math.cast_like(qml.math.convert_like(qml.math.eye(shape[-1]), evs), evs)
sqrt_evs = qml.math.expand_dims(qml.math.sqrt(evs), 1) * i
return vecs @ sqrt_evs @ qml.math.conj(qml.math.transpose(vecs, (0, 2, 1)))
return vecs @ qml.math.diag(qml.math.sqrt(evs)) @ qml.math.conj(qml.math.transpose(vecs))
def _compute_relative_entropy(rho, sigma, base=None):
r"""
Compute the quantum relative entropy of density matrix rho with respect to sigma.
.. math::
S(\rho\,\|\,\sigma)=-\text{Tr}(\rho\log\sigma)-S(\rho)=\text{Tr}(\rho\log\rho)-\text{Tr}(\rho\log\sigma)
=\text{Tr}(\rho(\log\rho-\log\sigma))
where :math:`S` is the von Neumann entropy.
"""
if base:
div_base = np.log(base)
else:
div_base = 1
evs_rho, u_rho = qml.math.linalg.eigh(rho)
evs_sig, u_sig = qml.math.linalg.eigh(sigma)
# cast all eigenvalues to real
evs_rho, evs_sig = np.real(evs_rho), np.real(evs_sig)
# zero eigenvalues need to be treated very carefully here
# we use the convention that 0 * log(0) = 0
evs_sig = qml.math.where(evs_sig == 0, 0.0, evs_sig)
rho_nonzero_mask = qml.math.where(evs_rho == 0.0, False, True)
ent = qml.math.entr(qml.math.where(rho_nonzero_mask, evs_rho, 1.0))
# whether the inputs are batched
rho_batched = len(qml.math.shape(rho)) > 2
sig_batched = len(qml.math.shape(sigma)) > 2
indices_rho = "abc" if rho_batched else "bc"
indices_sig = "abd" if sig_batched else "bd"
target = "acd" if rho_batched or sig_batched else "cd"
# the matrix of inner products between eigenvectors of rho and eigenvectors
# of sigma; this is a doubly stochastic matrix
rel = qml.math.einsum(
f"{indices_rho},{indices_sig}->{target}",
np.conj(u_rho),
u_sig,
optimize="greedy",
)
rel = np.abs(rel) ** 2
if sig_batched:
evs_sig = qml.math.expand_dims(evs_sig, 1)
rel = qml.math.sum(qml.math.where(rel == 0.0, 0.0, np.log(evs_sig) * rel), -1)
rel = -qml.math.sum(qml.math.where(rho_nonzero_mask, evs_rho * rel, 0.0), -1)
return (rel - ent) / div_base
[docs]def relative_entropy(state0, state1, base=None, check_state=False, c_dtype="complex128"):
r"""
Compute the quantum relative entropy of one state with respect to another.
.. math::
S(\rho\,\|\,\sigma)=-\text{Tr}(\rho\log\sigma)-S(\rho)=\text{Tr}(\rho\log\rho)-\text{Tr}(\rho\log\sigma)
=\text{Tr}(\rho(\log\rho-\log\sigma))
Roughly speaking, quantum relative entropy is a measure of distinguishability between two
quantum states. It is the quantum mechanical analog of relative entropy.
Each state must be given as a density matrix. To find the relative entropy given
a pure state, call :func:`~.math.dm_from_state_vector` first.
Args:
state0 (tensor_like): ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)`` density matrix.
state1 (tensor_like): ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)`` density matrix.
base (float): Base for the logarithm. If None, the natural logarithm is used.
check_state (bool): If True, the function will check the state validity (shape and norm).
c_dtype (str): Complex floating point precision type.
Returns:
float: Quantum relative entropy of state0 with respect to state1
**Examples**
The relative entropy between two equal states is always zero:
>>> x = np.array([1, 0])
>>> x = qml.math.dm_from_state_vector(x)
>>> qml.math.relative_entropy(x, x)
0.0
and the relative entropy between two non-equal pure states is always infinity:
>>> y = np.array([1, 1]) / np.sqrt(2)
>>> y = qml.math.dm_from_state_vector(y)
>>> qml.math.relative_entropy(x, y)
inf
The quantum states can be provided as density matrices, allowing for computation
of relative entropy between mixed states:
>>> rho = np.array([[0.3, 0], [0, 0.7]])
>>> sigma = np.array([[0.5, 0], [0, 0.5]])
>>> qml.math.relative_entropy(rho, sigma)
0.08228288
It is also possible to change the log base:
>>> qml.math.relative_entropy(rho, sigma, base=2)
0.1187091
"""
# Cast as a c_dtype array
state0 = cast(state0, dtype=c_dtype)
# Cannot be cast_like if jit
if not is_abstract(state0):
state1 = cast_like(state1, state0)
if check_state:
# pylint: disable=expression-not-assigned
_check_density_matrix(state0)
_check_density_matrix(state1)
# Compare the number of wires on both subsystems
if qml.math.shape(state0)[-1] != qml.math.shape(state1)[-1]:
raise qml.QuantumFunctionError("The two states must have the same number of wires.")
return _compute_relative_entropy(state0, state1, base=base)
def _check_density_matrix(density_matrix):
"""Check the shape, the trace and the positive semi-definitiveness of a matrix."""
dim = density_matrix.shape[-1]
if (
len(density_matrix.shape) not in (2, 3)
or density_matrix.shape[-2] != dim
or not np.log2(dim).is_integer()
):
raise ValueError("Density matrix must be of shape (2**N, 2**N) or (batch_dim, 2**N, 2**N).")
if len(density_matrix.shape) == 2:
density_matrix = qml.math.stack([density_matrix])
if not is_abstract(density_matrix):
for dm in density_matrix:
# Check trace
trace = np.trace(dm)
if not allclose(trace, 1.0, atol=1e-10):
raise ValueError("The trace of the density matrix should be one.")
# Check if the matrix is Hermitian
conj_trans = np.transpose(np.conj(dm))
if not allclose(dm, conj_trans):
raise ValueError("The matrix is not Hermitian.")
# Check if positive semi-definite
evs, _ = qml.math.linalg.eigh(dm)
evs = np.real(evs)
evs_non_negative = [ev for ev in evs if ev >= -1e-7]
if len(evs) != len(evs_non_negative):
raise ValueError("The matrix is not positive semi-definite.")
def _check_state_vector(state_vector):
"""Check the shape and the norm of a state vector."""
dim = state_vector.shape[-1]
if len(np.shape(state_vector)) not in (1, 2) or not np.log2(dim).is_integer():
raise ValueError("State vector must be of shape (2**wires,) or (batch_dim, 2**wires)")
if len(state_vector.shape) == 1:
state_vector = qml.math.stack([state_vector])
# Check norm
if not is_abstract(state_vector):
for sv in state_vector:
norm = np.linalg.norm(sv, ord=2)
if not allclose(norm, 1.0, atol=1e-10):
raise ValueError("Sum of amplitudes-squared does not equal one.")
[docs]def max_entropy(state, indices, base=None, check_state=False, c_dtype="complex128"):
r"""Compute the maximum entropy of a density matrix on a given subsystem. It supports all
interfaces (NumPy, Autograd, Torch, TensorFlow and Jax).
.. math::
S_{\text{max}}( \rho ) = \log( \text{rank} ( \rho ))
Args:
state (tensor_like): Density matrix of shape ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)``.
indices (list(int)): List of indices in the considered subsystem.
base (float): Base for the logarithm. If None, the natural logarithm is used.
check_state (bool): If True, the function will check the state validity (shape and norm).
c_dtype (str): Complex floating point precision type.
Returns:
float: The maximum entropy of the considered subsystem.
**Example**
The maximum entropy of a subsystem for any state vector can be obtained by first calling
:func:`~.math.dm_from_state_vector` on the input. Here is an example for the
maximally entangled state, where the subsystem entropy is maximal (default base for log is exponential).
>>> x = [1, 0, 0, 1] / np.sqrt(2)
>>> x = dm_from_state_vector(x)
>>> max_entropy(x, indices=[0])
0.6931472
The logarithm base can be changed. For example:
>>> max_entropy(x, indices=[0], base=2)
1.0
The maximum entropy can be obtained by providing a quantum state as a density matrix. For example:
>>> y = [[1/2, 0, 0, 1/2], [0, 0, 0, 0], [0, 0, 0, 0], [1/2, 0, 0, 1/2]]
>>> max_entropy(y, indices=[0])
0.6931472
The maximum entropy is always greater or equal to the Von Neumann entropy. In this maximally
entangled example, they are equal:
>>> vn_entropy(x, indices=[0])
0.6931472
However, in general, the Von Neumann entropy is lower:
>>> x = [np.cos(np.pi/8), 0, 0, -1j*np.sin(np.pi/8)]
>>> x = dm_from_state_vector(x)
>>> vn_entropy(x, indices=[1])
0.4164955
>>> max_entropy(x, indices=[1])
0.6931472
"""
density_matrix = reduce_dm(state, indices, check_state, c_dtype)
maximum_entropy = _compute_max_entropy(density_matrix, base)
return maximum_entropy
def _compute_max_entropy(density_matrix, base):
"""Compute the maximum entropy from a density matrix
Args:
density_matrix (tensor_like): ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)`` tensor for an integer `N`.
base (float, int): Base for the logarithm. If None, the natural logarithm is used.
Returns:
float: Maximum entropy of the density matrix.
**Example**
>>> x = [[1/2, 0], [0, 1/2]]
>>> _compute_max_entropy(x)
0.6931472
>>> x = [[1/2, 0], [0, 1/2]]
>>> _compute_max_entropy(x, base=2)
1.0
"""
# Change basis if necessary
if base:
div_base = np.log(base)
else:
div_base = 1
evs = qml.math.eigvalsh(density_matrix)
evs = qml.math.real(evs)
rank = qml.math.sum(evs / qml.math.where(evs > 1e-8, evs, 1.0), -1)
maximum_entropy = qml.math.log(rank) / div_base
return maximum_entropy
[docs]def min_entropy(state, indices, base=None, check_state=False, c_dtype="complex128"):
r"""Compute the minimum entropy from a density matrix.
.. math::
S_{\text{min}}( \rho ) = -\log( \max_{i} ( p_{i} ))
Args:
state (tensor_like): Density matrix of shape ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)``.
indices (list(int)): List of indices in the considered subsystem.
base (float): Base for the logarithm. If None, the natural logarithm is used.
check_state (bool): If True, the function will check the state validity (shape and norm).
c_dtype (str): Complex floating point precision type.
Returns:
float: The minimum entropy of the considered subsystem.
**Example**
The minimum entropy of a subsystem for any state vector can be obtained by first calling
:func:`~.math.dm_from_state_vector` on the input. Here is an example for the
maximally entangled state, where the subsystem entropy is maximal (default base for log is exponential).
>>> x = [1, 0, 0, 1] / np.sqrt(2)
>>> x = dm_from_state_vector(x)
>>> min_entropy(x, indices=[0])
0.6931472
The logarithm base can be changed. For example:
>>> min_entropy(x, indices=[0], base=2)
1.0
The minimum entropy can be obtained by providing a quantum state as a density matrix. For example:
>>> y = [[1/2, 0, 0, 1/2], [0, 0, 0, 0], [0, 0, 0, 0], [1/2, 0, 0, 1/2]]
>>> min_entropy(y, indices=[0])
0.6931472
The Von Neumann entropy is always greater than the minimum entropy.
>>> x = [np.cos(np.pi/8), 0, 0, -1j*np.sin(np.pi/8)]
>>> x = dm_from_state_vector(x)
>>> vn_entropy(x, indices=[1])
0.4164955
>>> min_entropy(x, indices=[1])
0.1583472
"""
density_matrix = reduce_dm(state, indices, check_state, c_dtype)
minimum_entropy = _compute_min_entropy(density_matrix, base)
return minimum_entropy
def _compute_min_entropy(density_matrix, base):
r"""Compute the minimum entropy from a density matrix
Args:
density_matrix (tensor_like): ``(2**N, 2**N)`` tensor density matrix for an integer `N`.
base (float, int): Base for the logarithm. If None, the natural logarithm is used.
Returns:
float: Minimum entropy of the density matrix.
**Example**
>>> x = [[1/2, 0], [0, 1/2]]
>>> _compute_min_entropy(x)
0.6931472
>>> x = [[1/2, 0], [0, 1/2]]
>>> _compute_min_entropy(x, base=2)
1.0
"""
# Change basis if necessary
div_base = np.log(base) if base else 1
evs, _ = qml.math.linalg.eigh(density_matrix)
evs = qml.math.real(evs)
minimum_entropy = -qml.math.log(qml.math.max(evs)) / div_base
return minimum_entropy
[docs]def trace_distance(state0, state1, check_state=False, c_dtype="complex128"):
r"""
Compute the trace distance between two quantum states.
.. math::
T(\rho, \sigma)=\frac12\|\rho-\sigma\|_1
=\frac12\text{Tr}\left(\sqrt{(\rho-\sigma)^{\dagger}(\rho-\sigma)}\right)
where :math:`\|\cdot\|_1` is the Schatten :math:`1`-norm.
The trace distance measures how close two quantum states are. In particular, it upper-bounds
the probability of distinguishing two quantum states.
Args:
state0 (tensor_like): ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)`` density matrix.
state1 (tensor_like): ``(2**N, 2**N)`` or ``(batch_dim, 2**N, 2**N)`` density matrix.
check_state (bool): If True, the function will check the states' validity (shape and norm).
c_dtype (str): Complex floating point precision type.
Returns:
float: Trace distance between state0 and state1
**Examples**
The trace distance between two equal states is always zero:
>>> x = np.array([[1, 0], [0, 0]])
>>> qml.math.trace_distance(x, x)
0.0
It is possible to use state vectors by first transforming them into density matrices via the
:func:`~reduce_statevector` function:
>>> y = qml.math.reduce_statevector(np.array([0.2, np.sqrt(0.96)]), [0])
>>> qml.math.trace_distance(x, y)
0.9797958971132713
The quantum states can also be provided as batches of density matrices:
>>> batch0 = np.array([np.eye(2) / 2, np.ones((2, 2)) / 2, np.array([[1, 0],[0, 0]])])
>>> batch1 = np.array([np.ones((2, 2)) / 2, np.ones((2, 2)) / 2, np.array([[1, 0],[0, 0]])])
>>> qml.math.trace_distance(batch0, batch1)
array([0.5, 0. , 0. ])
If only one of the two states represent a single element, then the trace distances are taken
with respect to that element:
>>> rho = np.ones((2, 2)) / 2
>>> qml.math.trace_distance(rho, batch0)
array([0.5 , 0. , 0.70710678])
"""
# Cast as a c_dtype array
state0 = cast(state0, dtype=c_dtype)
# Cannot be cast_like if jit
if not is_abstract(state0):
state1 = cast_like(state1, state0)
if check_state:
_check_density_matrix(state0)
_check_density_matrix(state1)
if state0.shape[-1] != state1.shape[-1]:
raise qml.QuantumFunctionError("The two states must have the same number of wires.")
if len(state0.shape) == len(state1.shape) == 3 and state0.shape[0] != state1.shape[0]:
raise ValueError(
"The two states must be batches of the same size, or one of them must contain a single "
"element."
)
eigvals = qml.math.abs(qml.math.eigvalsh(state0 - state1))
return qml.math.sum(eigvals, axis=-1) / 2
_modules/pennylane/math/quantum
Download Python script
Download Notebook
View on GitHub