qml.math.reduce_dm¶
- reduce_dm(density_matrix, indices, check_state=False, c_dtype='complex128')[source]¶
Compute the density matrix from a state represented with a density matrix.
- Parameters
density_matrix (tensor_like) – 2D or 3D density matrix tensor. This tensor should be of size
(2**N, 2**N)
or(batch_dim, 2**N, 2**N)
, for some integer number of wires``N``.indices (list(int)) – List of indices in the considered subsystem.
check_state (bool) – If True, the function will check the state validity (shape and norm).
c_dtype (str) – Complex floating point precision type.
- Returns
Density matrix of size
(2**len(indices), 2**len(indices))
or(batch_dim, 2**len(indices), 2**len(indices))
- Return type
tensor_like
Example
>>> x = np.array([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) >>> reduce_dm(x, indices=[0]) [[1.+0.j 0.+0.j] [0.+0.j 0.+0.j]]
>>> y = [[0.5, 0, 0.5, 0], [0, 0, 0, 0], [0.5, 0, 0.5, 0], [0, 0, 0, 0]] >>> reduce_dm(y, indices=[0]) [[0.5+0.j 0.5+0.j] [0.5+0.j 0.5+0.j]]
>>> reduce_dm(y, indices=[1]) [[1.+0.j 0.+0.j] [0.+0.j 0.+0.j]]
>>> z = tf.Variable([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=tf.complex128) >>> reduce_dm(z, indices=[1]) tf.Tensor( [[1.+0.j 0.+0.j] [0.+0.j 0.+0.j]], shape=(2, 2), dtype=complex128)
>>> x = np.array([[[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], ... [[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]) >>> reduce_dm(x, indices=[1]) array([[[1.+0.j, 0.+0.j], [0.+0.j, 0.+0.j]], [[0.+0.j, 0.+0.j], [0.+0.j, 1.+0.j]]])
code/api/pennylane.math.reduce_dm
Download Python script
Download Notebook
View on GitHub