qml.math.marginal_prob¶
- marginal_prob(prob, axis)[source]¶
Compute the marginal probability given a joint probability distribution expressed as a tensor. Each random variable corresponds to a dimension.
If the distribution arises from a quantum circuit measured in computational basis, each dimension corresponds to a wire. For example, for a 2-qubit quantum circuit prob[0, 1] is the probability of measuring the first qubit in state 0 and the second in state 1.
- Parameters
prob (tensor_like) – 1D tensor of probabilities. This tensor should of size
(2**N,)
for some integer valueN
.axis (list[int]) – the axis for which to calculate the marginal probability distribution
- Returns
the marginal probabilities, of size
(2**len(axis),)
- Return type
tensor_like
Example
>>> x = tf.Variable([1, 0, 0, 1.], dtype=tf.float64) / np.sqrt(2) >>> marginal_prob(x, axis=[0, 1]) <tf.Tensor: shape=(4,), dtype=float64, numpy=array([0.70710678, 0. , 0. , 0.70710678])> >>> marginal_prob(x, axis=[0]) <tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.70710678, 0.70710678])>
code/api/pennylane.math.marginal_prob
Download Python script
Download Notebook
View on GitHub