qml.math.frobenius_inner_product¶
- frobenius_inner_product(A, B, normalize=False, like=None)[source]¶
Frobenius inner product between two matrices.
\[\langle A, B \rangle_F = \sum_{i,j=1}^n A_{ij} B_{ij} = \operatorname{tr} (A^T B)\]The Frobenius inner product is equivalent to the Hilbert-Schmidt inner product for matrices with real-valued entries.
- Parameters
A (tensor_like[float]) – First matrix, assumed to be a square array.
B (tensor_like[float]) – Second matrix, assumed to be a square array.
normalize (bool) – If True, divide the inner product by the Frobenius norms of A and B.
- Returns
Frobenius inner product of A and B
- Return type
float
Example
>>> A = np.random.random((3,3)) >>> B = np.random.random((3,3)) >>> qml.math.frobenius_inner_product(A, B) 3.091948202943376
code/api/pennylane.math.frobenius_inner_product
Download Python script
Download Notebook
View on GitHub