qml.data.DatasetList¶
- class DatasetList(value=UnsetType.UNSET, info=None, *, bind=None, parent_and_key=None)[source]¶
Bases:
Generic
[pennylane.data.base.typing_util.T
],pennylane.data.base.attribute.DatasetAttribute
[collections.abc.MutableMapping
,collections.abc.Sequence
[pennylane.data.base.typing_util.T
],collections.abc.Iterable
[pennylane.data.base.typing_util.T
]],collections.abc.MutableSequence
[pennylane.data.base.typing_util.T
],pennylane.data.base.mapper.MapperMixin
Provides a list-like collection type for Dataset Attributes.
Attributes
Returns the HDF5 object that contains this attribute's data.
Returns the
AttributeInfo
for this attribute.Maps type_ids to their DatasetAttribute classes.
Maps types to their default DatasetAttribute
- bind¶
Returns the HDF5 object that contains this attribute’s data.
- info¶
Returns the
AttributeInfo
for this attribute.
- registry = mappingproxy({'dataset': <class 'pennylane.data.base.dataset._DatasetAttributeType'>, 'array': <class 'pennylane.data.attributes.array.DatasetArray'>, 'dict': <class 'pennylane.data.attributes.dictionary.DatasetDict'>, 'json': <class 'pennylane.data.attributes.json.DatasetJSON'>, 'list': <class 'pennylane.data.attributes.list.DatasetList'>, 'molecule': <class 'pennylane.data.attributes.molecule.DatasetMolecule'>, 'none': <class 'pennylane.data.attributes.none.DatasetNone'>, 'operator': <class 'pennylane.data.attributes.operator.operator.DatasetOperator'>, 'pytree': <class 'pennylane.data.attributes.pytree.DatasetPyTree'>, 'scalar': <class 'pennylane.data.attributes.scalar.DatasetScalar'>, 'sparse_array': <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, 'string': <class 'pennylane.data.attributes.string.DatasetString'>, 'tuple': <class 'pennylane.data.attributes.tuple.DatasetTuple'>})¶
Maps type_ids to their DatasetAttribute classes.
- type_consumer_registry = mappingproxy({<class 'pennylane.qchem.molecule.Molecule'>: <class 'pennylane.data.attributes.molecule.DatasetMolecule'>, <class 'NoneType'>: <class 'pennylane.data.attributes.none.DatasetNone'>, <class 'scipy.sparse._bsr.bsr_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._coo.coo_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._csc.csc_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._csr.csr_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._dia.dia_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._dok.dok_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._lil.lil_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._csc.csc_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._csr.csr_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._bsr.bsr_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._coo.coo_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._dia.dia_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._dok.dok_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._lil.lil_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'str'>: <class 'pennylane.data.attributes.string.DatasetString'>, <class 'tuple'>: <class 'pennylane.data.attributes.tuple.DatasetTuple'>})¶
Maps types to their default DatasetAttribute
- type_id = 'list'¶
Methods
append
(value)S.append(value) -- append value to the end of the sequence
clear
()Returns an iterable of types for which this should be the default codec.
copy
()Returns a copy of this list as a builtin
list
, with all elements copied..Deserializes the mapped value from
bind
, and also perform a 'deep-copy' of any nested values contained inbind
.count
(value)extend
(values)S.extend(iterable) -- extend sequence by appending elements from the iterable
Deserializes the mapped value from
bind
.hdf5_to_value
(bind)Parses bind into Python object.
index
(value, [start, [stop]])Raises ValueError if the value is not present.
insert
(index, value)Implements the insert() method.
pop
([index])Raise IndexError if list is empty or index is out of range.
py_type
(value_type)Determines the
py_type
of an attribute during value initialization, if it was not provided in theinfo
argument.remove
(value)S.remove(value) -- remove first occurrence of value.
reverse
()S.reverse() -- reverse IN PLACE
value_to_hdf5
(bind_parent, key, value)Converts value into a HDF5 Array or Group under bind_parent[key].
- append(value)¶
S.append(value) – append value to the end of the sequence
- clear() None -- remove all items from S ¶
- classmethod consumes_types()¶
Returns an iterable of types for which this should be the default codec. If a value of one of these types is assigned to a Dataset without specifying a type_id, this type will be used.
- copy_value()[source]¶
Deserializes the mapped value from
bind
, and also perform a ‘deep-copy’ of any nested values contained inbind
.
- count(value) integer -- return number of occurrences of value ¶
- extend(values)¶
S.extend(iterable) – extend sequence by appending elements from the iterable
- get_value()¶
Deserializes the mapped value from
bind
.
- index(value[, start[, stop]]) integer -- return first index of value. ¶
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
- pop([index]) item -- remove and return item at index (default last). ¶
Raise IndexError if list is empty or index is out of range.
- classmethod py_type(value_type)¶
Determines the
py_type
of an attribute during value initialization, if it was not provided in theinfo
argument. This method returnsf"{value_type.__module__}.{value_type.__name__}
.
- remove(value)¶
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.
- reverse()¶
S.reverse() – reverse IN PLACE