qml.data.DatasetOperator¶
- class DatasetOperator(value=UnsetType.UNSET, info=None, *, bind=None, parent_and_key=None)[source]¶
Bases:
Generic
[pennylane.data.attributes.operator.operator.Op
],pennylane.data.base.attribute.DatasetAttribute
[collections.abc.MutableMapping
,pennylane.data.attributes.operator.operator.Op
,pennylane.data.attributes.operator.operator.Op
]DatasetAttribute
forpennylane.operation.Operator
classes.- Supports all operator types that meet the following conditions:
- The
__init__()
method matches the signature ofOperator.__init__
, or any additional arguments are optional and do not affect the value of the operator
- The
- The
data
andwires
attributes will produce an identical copy of operator if passed into the classes’
__init__()
method. Generally, this means__init__()
do not mutate theidentifiers
andwires
arguments.
- The
Hyperparameters are not used or are automatically derived by
__init__()
.
Attributes
Returns the HDF5 object that contains this attribute's data.
Returns the
AttributeInfo
for this attribute.Maps type_ids to their DatasetAttribute classes.
Maps types to their default DatasetAttribute
- bind¶
Returns the HDF5 object that contains this attribute’s data.
- info¶
Returns the
AttributeInfo
for this attribute.
- registry = mappingproxy({'dataset': <class 'pennylane.data.base.dataset._DatasetAttributeType'>, 'array': <class 'pennylane.data.attributes.array.DatasetArray'>, 'dict': <class 'pennylane.data.attributes.dictionary.DatasetDict'>, 'json': <class 'pennylane.data.attributes.json.DatasetJSON'>, 'list': <class 'pennylane.data.attributes.list.DatasetList'>, 'molecule': <class 'pennylane.data.attributes.molecule.DatasetMolecule'>, 'none': <class 'pennylane.data.attributes.none.DatasetNone'>, 'operator': <class 'pennylane.data.attributes.operator.operator.DatasetOperator'>, 'pytree': <class 'pennylane.data.attributes.pytree.DatasetPyTree'>, 'scalar': <class 'pennylane.data.attributes.scalar.DatasetScalar'>, 'sparse_array': <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, 'string': <class 'pennylane.data.attributes.string.DatasetString'>, 'tuple': <class 'pennylane.data.attributes.tuple.DatasetTuple'>})¶
Maps type_ids to their DatasetAttribute classes.
- type_consumer_registry = mappingproxy({<class 'pennylane.qchem.molecule.Molecule'>: <class 'pennylane.data.attributes.molecule.DatasetMolecule'>, <class 'NoneType'>: <class 'pennylane.data.attributes.none.DatasetNone'>, <class 'scipy.sparse._bsr.bsr_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._coo.coo_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._csc.csc_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._csr.csr_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._dia.dia_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._dok.dok_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._lil.lil_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._csc.csc_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._csr.csr_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._bsr.bsr_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._coo.coo_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._dia.dia_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._dok.dok_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._lil.lil_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'str'>: <class 'pennylane.data.attributes.string.DatasetString'>, <class 'tuple'>: <class 'pennylane.data.attributes.tuple.DatasetTuple'>})¶
Maps types to their default DatasetAttribute
- type_id = 'operator'¶
Methods
Returns an iterable of types for which this should be the default codec.
Deserializes the mapped value from
bind
, and also perform a 'deep-copy' of any nested values contained inbind
.Returns a valid default value for this type, or
UNSET
if this type must be initialized with a value.Deserializes the mapped value from
bind
.hdf5_to_value
(bind)Parses bind into Python object.
py_type
(value_type)Determines the
py_type
of an attribute during value initialization, if it was not provided in theinfo
argument.Set of supported operators.
value_to_hdf5
(bind_parent, key, value)Converts value into a HDF5 Array or Group under bind_parent[key].
- classmethod consumes_types()¶
Returns an iterable of types for which this should be the default codec. If a value of one of these types is assigned to a Dataset without specifying a type_id, this type will be used.
- copy_value()¶
Deserializes the mapped value from
bind
, and also perform a ‘deep-copy’ of any nested values contained inbind
.
- classmethod default_value()¶
Returns a valid default value for this type, or
UNSET
if this type must be initialized with a value.
- get_value()¶
Deserializes the mapped value from
bind
.
- classmethod py_type(value_type)¶
Determines the
py_type
of an attribute during value initialization, if it was not provided in theinfo
argument. This method returnsf"{value_type.__module__}.{value_type.__name__}
.