qml.data.DatasetOperator¶
- class DatasetOperator(value=UnsetType.UNSET, info=None, *, bind=None, parent_and_key=None)[source]¶
Bases:
Generic
[pennylane.data.attributes.operator.operator.Op
],pennylane.data.base.attribute.DatasetAttribute
[collections.abc.MutableMapping
,pennylane.data.attributes.operator.operator.Op
,pennylane.data.attributes.operator.operator.Op
]DatasetAttribute
forpennylane.operation.Operator
classes.- Supports all operator types that meet the following conditions:
- The
__init__()
method matches the signature ofOperator.__init__
, or any additional arguments are optional and do not affect the value of the operator
- The
- The
data
andwires
attributes will produce an identical copy of operator if passed into the classes’
__init__()
method. Generally, this means__init__()
do not mutate theidentifiers
andwires
arguments.
- The
Hyperparameters are not used or are automatically derived by
__init__()
.
Almost all operators meet these conditions. This type also supports serializing the
Hamiltonian
andTensor
operators.Attributes
Returns the HDF5 object that contains this attribute's data.
Returns the
AttributeInfo
for this attribute.Maps type_ids to their DatasetAttribute classes.
Maps types to their default DatasetAttribute
- bind¶
Returns the HDF5 object that contains this attribute’s data.
- info¶
Returns the
AttributeInfo
for this attribute.
- registry = mappingproxy({'dataset': <class 'pennylane.data.base.dataset._DatasetAttributeType'>, 'array': <class 'pennylane.data.attributes.array.DatasetArray'>, 'dict': <class 'pennylane.data.attributes.dictionary.DatasetDict'>, 'json': <class 'pennylane.data.attributes.json.DatasetJSON'>, 'list': <class 'pennylane.data.attributes.list.DatasetList'>, 'molecule': <class 'pennylane.data.attributes.molecule.DatasetMolecule'>, 'none': <class 'pennylane.data.attributes.none.DatasetNone'>, 'operator': <class 'pennylane.data.attributes.operator.operator.DatasetOperator'>, 'pytree': <class 'pennylane.data.attributes.pytree.DatasetPyTree'>, 'scalar': <class 'pennylane.data.attributes.scalar.DatasetScalar'>, 'sparse_array': <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, 'string': <class 'pennylane.data.attributes.string.DatasetString'>, 'tuple': <class 'pennylane.data.attributes.tuple.DatasetTuple'>})¶
Maps type_ids to their DatasetAttribute classes.
- type_consumer_registry = mappingproxy({<class 'pennylane.qchem.molecule.Molecule'>: <class 'pennylane.data.attributes.molecule.DatasetMolecule'>, <class 'NoneType'>: <class 'pennylane.data.attributes.none.DatasetNone'>, <class 'scipy.sparse._bsr.bsr_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._coo.coo_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._csc.csc_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._csr.csr_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._dia.dia_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._dok.dok_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._lil.lil_array'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._csc.csc_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._csr.csr_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._bsr.bsr_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._coo.coo_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._dia.dia_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._dok.dok_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'scipy.sparse._lil.lil_matrix'>: <class 'pennylane.data.attributes.sparse_array.DatasetSparseArray'>, <class 'str'>: <class 'pennylane.data.attributes.string.DatasetString'>, <class 'tuple'>: <class 'pennylane.data.attributes.tuple.DatasetTuple'>})¶
Maps types to their default DatasetAttribute
- type_id = 'operator'¶
Methods
Returns an iterable of types for which this should be the default codec.
Deserializes the mapped value from
bind
, and also perform a 'deep-copy' of any nested values contained inbind
.Returns a valid default value for this type, or
UNSET
if this type must be initialized with a value.Deserializes the mapped value from
bind
.hdf5_to_value
(bind)Parses bind into Python object.
py_type
(value_type)Determines the
py_type
of an attribute during value initialization, if it was not provided in theinfo
argument.Set of supported operators.
value_to_hdf5
(bind_parent, key, value)Converts value into a HDF5 Array or Group under bind_parent[key].
- classmethod consumes_types()¶
Returns an iterable of types for which this should be the default codec. If a value of one of these types is assigned to a Dataset without specifying a type_id, this type will be used.
- copy_value()¶
Deserializes the mapped value from
bind
, and also perform a ‘deep-copy’ of any nested values contained inbind
.
- classmethod default_value()¶
Returns a valid default value for this type, or
UNSET
if this type must be initialized with a value.
- get_value()¶
Deserializes the mapped value from
bind
.
- classmethod py_type(value_type)¶
Determines the
py_type
of an attribute during value initialization, if it was not provided in theinfo
argument. This method returnsf"{value_type.__module__}.{value_type.__name__}
.